Level 6

Structures of Information
beyond D:ifferentiation

The key concept in cybernetic systems is information, availability of informa-
tion determining the models that are constructed. Assumption of environment-
orientedness means that it is the information coming from the environment that
dictates the results in a more or less unique way.

Despite the assumed uniqueness there still are many ways how the world can
be seen and how this view can be interpreted. As the neocybernetic models are
based on observed correlation structures, by appropriate scaling of the variables
one can implement continuous modifications to the information that is visible
to the system. This all is familiar from principal component analysis. How-
ever, here the goal is to extend beyond the existent intuitions: What happens
when the amount of available information increases? How can the emergence of
structures be understood?

6.1 Towards more and more information

Being based on principal components, neocybernetic model is robust against
high dimensionality. To assure maximum information availability, a reasonable
strategy is to include all available data among the measurements — the modeling
machinery can automatically select the relevant pieces of information. When the
data dimension becomes high, there are also qualitative and theoretical benefits.

6.1.1 About optimality and linearity

Thinking holistically is a comprehensive challenge. For example, one should no
assume that there is some centralized optimization criterion being reached for
by the system. But if the data dimension is high enough, a common goal is a
useful abstraction: It turns out that optimality become reducible.

The most straightforward way to assure the supply of information is to inflate
the space of input variables, so that m, the dimension of input data, grows. To
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144 Level 6. Structures of Information beyond Differentiation

analyze this issue, assume that the cost criterion can be locally decomposed so
that its differential change can be expressed as a sum of N weighted parts:

0J =c16J1 + - +enddy (6.1)
Here the sub-criteria are assumed to be locally linearizable, so that
8J; = Q] du (6.2)

for some parameter vector ); and variable vector w. If the sub-criteria are
independent, for high number of variables there holds for correlations among
different vectors i and j
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The more there exist variables, the better random vectors become orthogonal.
When solving for gradients, one has

0J;
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so that
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Now, assuming that the variables are adapted along the negative gradient of
some sub-criterion, so that Au = —v@Q);, the global criterion also goes down:
76J T T
Au % = —’)/Qi (C1Q1 + -+ CNQN) X —C; Qi Q; <0. (6.6)

This means that if the sub-criteria are mutually independent, and if the input
data dimension is high enough, the task of multi-objective optimization can be
decomposed. Local optimizations result in global optimization.

What is more, when the data dimension is high, getting stuck in local minima
is less probable. Multiple variables typically mean better continuity in the data
space, and perhaps also evolutionary processes can be characterized in terms
of “generalized diffusion”. How about the cost criterion (6.1) then — is it not
unrealistic to assume linear additivity of the sub-criteria? Again, it is high
dimensionality that helps to avoid problems. The more there are features (vari-
ables) available, the more probable it is that the problem becomes more linear
(compare to the idea of Support Vector Machines, where a complex classification
problem is changed into a simple problem in high dimension).

6.1.2 New sensors and innovations

When trying to affect the modeling results, selection of variables to be included
in input data is the most important decision. How to assure high dimensionality
and fresh information in the data, where to find the new sources of observations?
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New innovations and new sensors are needed by the system — the term “sensor”
being used in a relaxed sense here, as the information capture is to be seen in
the holistic perspective. It does not matter what is the physical manifestation
of the sensors, as long as the acquired information can cumulate in the model
structures. Some examples are given here.

e Spatial distribution can be utilized, that is, information from spatially
distinct locations can be used. This far it has been assumed that a sys-
tem is isolated — however, in a real ecosystem, neighboring systems are in
close connection, and they can be modeled as a whole. Specially, assuming
that there are no limitations for seeds to spread within some area (or no
limitations for information flow), the spatial structure can be “collapsed”,
assuming that the spatial distribution delivers relevant material about the
ecosystem in general. This can be utilized when constructing the covari-
ance matrices: Plentiful fresh data and variation is available when each
subregion within the ecosystem delivers its contribution to the behaviors
of the environmental variables.

e Temporal distribution can also be utilized, that is, information from
temporally distinct time points can be used. Assuming that a species in
an ecosystem has some (hard-coded) memory, it is not only the current
state of the environment that is seen by the population, but also the time
history: If the previous year was bad, the population is lower this year,
no matter what are the current circumstances. The longer-living the in-
dividuals of a population are, the longer is the “memory”, too. When
cybernetic models are constructed for such time-series data, it is no more
simple PCA that is being carried out; it is dynamic modeling in the frame-
work of (implicit) subspace identification [60]. It can be assumed that if
the food level variations are low, then — after adaptation — the envi-
ronment seems to support longer-living species. Is it because of this that
predators live longer than prey, the information being filtered more on the
higher trophic layers?

It turns out that the more there are variables, and the more there are possible
variable combinations — and the more there are ways to select the “interesting”
or most relevant features, different selections resulting in different models and
different views of the world. This is a special challenge in constructivistic sys-
tems, where the space of candidate variables is potentially infinite; in psychology,
one speaks of the Barnum effect, meaning that when there are enough degrees
of freedom, any model can be matched against the data (making numerological
studies, for example, often astonishing).

6.1.3 Example: Transformations implemented by nature

Frequency domain was employed in the previous chapter to study information
distribution among subsystems. But such considerations are applicable not only
at the ecosystem level — it seems that also within a single individual similar
analyses are appropriate. Specially in the processing of auditory and visual
information clever data preprocessing is needed to extract fresh features from
the temporal and spatial data. Again, it is a nice coincidence that there are
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powerful mathematical tools available for analysis and understanding of such
features.

When auditory, time-domain signals are received, the cilia in the inner ear
implement spectral analysis: Depending on the frequency, sound waves can
penetrate different distances in the cochlea. As the cilia are connected to the
auditory cortex, energy in each frequency range becomes an input signal of its
own, the number of inputs thus becoming expanded. What the brain then can
see in the preprocessed signals is combinations of formants; this means that the
patterns being modeled are phonemes.

It seems that similar frequency-domain reconstruction of signals takes place
also when visual signals are processed; however, now the information is not
distributed temporally but spatially. Simple networks of neurons can imple-
ment (two-dimensional) discrete Fourier transform. This kind of coding of the
images is beneficial because cross-correlation between two transformed images
efficiently reveals the dislocations and structured differences among the images.
For example, movements within the field of vision are manifested when succes-
sive transformed images are compared; on the other hand, depth cues become
available when using image pairs acquired from nonidentical locations (from the
two eyes). The succession of parallel / sequential transformed image vectors is
interpreted as input data samples; when the correlation structures among data
are modeled in the neocybernetic spirit, the resulting sparse components (see
later) perhaps reveal natural-like decomposition of visual patterns. This kind
of extra information concerning spatial dependencies among visual entities can
perhaps explain the properties of three-dimensional vision.

6.2 Blockages of information

When there is plenty of data available, not all need to be used. Here, some
examples are given how the results can be controlled by explicit channeling of
information, by explicitly determining structures of data flow. In a sense, it is
all about implementing non-idealities again — the ranges of seeing information
are limited.

6.2.1 Hierarchic models

As an example, study a cybernetic system with the following model matrices
(assume “clever agents”):

A= and B= . . . (6.7)

Dots in the structures mean that those connections are non-zero, whereas empty
slots denote missing connection. The above B matrix form can be appropriate in
sensor/actuator structures, where each actor has its own measurements. There
is no complete information available, and data flow becomes localized. The
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nonideal flow of information introduces distortion in the data, and the analyses
in chapter 3 become outdated: The degrees of freedom in input data are no
more a limiting factor, non-trivial structure emerges even though n = m. Closer
analysis reveals that the basis vector ¢; is dominated by the local measurements
U -

More interesting results are found if one has triangular interaction matrix, each
actor only seeing the actors in front of it, the last actor being capable of seeing
all information. The structure becomes strictly hierarchic:

A= - - and B=| - - - - |. (6.8)

This means that the first variable is not affected by the other ones — it lives a
life of its own, exploiting all the information that is available in input. Thus, it
alone constructs a principal subspace model of the data; because this model is
one-dimensional, it basis vector must coincide with the first principal component
axis. In this sense, the first variable implements (trivial) principal component
analysis rather than principal subspace analysis. Such reasoning can be re-
cursively continued: The second variable is affected only by the first variable
representing the first principal component, meaning that its contribution is de-
flated from the data. This way, looking at the second variable alone, it is the
second principal component that must be represented by it. And the same anal-
ysis can be continued until the variable n, meaning that the hierarchic structure
implements explicit principal component analysis. Because of the information
blockages, principal components get separated, and structure emerges.

6.2.2 “Clever agent algorithm”

Implementing an algorithm is a compromise between theoretical and practical
aspects. Now it seems that the nonideality — triangular blockage of information,
as motivated above — enhances convergence, as the variables disturb each other
less. Tt turns out that the Hebbian/anti-Hebbian adaptation becomes a useful
PCA algorithm, as it is robust — there are few free parameters — and because
the explicit construction of the covariance matrix E{uu’} is avoided: In the
cybernetic cases, m is typically high, and the covariance matrix can be huge.

In Matlab syntax one can write the “vanilla” algorithm as showqn in Fig. 6.2
(matrix U containing the k sample vectors u? as rows, and matrix Xbar con-
taining the k internal variable vectors Z7 as rows).

The data structures Exx and Exu are initialized to small values (matrix Exx
having to remain positive definite at any time). The parameter A determines
the adaptation rate. After convergence, the basis vectors can be picked out from
the matrix ¢ = E{zz7 } 'E{zu’}.

As an example, a case of coding hand-written digits is represented. As data
material, there were over 8000 samples of handwritten digits (see Fig. 6.1) writ-
ten in a grid of 32 x 32 intensity values [50]. The 1024-dimensional intensity
vectors were used as data u, and the algorithm was iterated until convergence.
The results are shown in Fig. 6.3.
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Figure 6.1: Examples of
handwritten digits

B i I e e B
EXSEEZERERN
ZETNEEEZCE
SOSNSCRERE
PN IR
SRR EROEE
e FININN
SSNEISEER

EREdEERERE
YL RERES

while ITERATE

% Balance of latent variables
Xbar = U * (inv(Exx)*Exu)’;

% Model adaptation
Exu = lambda*Exu + (1-lambda)*Xbar’*U/k;
Exx = lambda*Exx + (1-lambda)*Xbar’*Xbar/k;

% PCA rather than PSA
Exx = tril(ones(n,n)) .*Exx;

end

Figure 6.2: Algorithm 1: Hebbian/anti-Hebbian PCA by “intelligent agents”

6.2.3 On-line selection of information

There are information flows and blockages on many levels in an adapting system,
and frequency-domain characterizations are possible here, too. The slowest-scale
control of information takes place in the adaptation processes: For example,
gene pools that restrict information to remain within the species implement
en extreme block for spreading of information. The results become visible as
peculiar evolutionary developments on the species level.

In the other extreme end, the information blockages can also be very temporary.
For example, the routing of information can be dependent of the actual signal
properties — meaning that the signal path is nonlinear. As seen from the
opposite point of view, it can be said that nonlinearities are information filters.

Linearity means homogeneity and predictability, whereas nonlinearity is the key
to emerging differentiation among structures. When dropping the assumption
of linearity, the strong guidelines are lost: There is an infinite number of pos-
sible nonlinearities available, and there is no general theory to understand the
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Figure 6.3: The 25 principal components extracted from the handwritten
digits. The 1024 dimensional feature vectors have been decoded as planar
patterns to reveal their connection to input data properties (dark regions
mean that there is no correlation with the feature and the corresponding
pixels; light blue regions denote high negative correlation, and light red
denote high positive correlation). Because of the hierarchically structured
feature extraction, the sparse subspace has been decomposed into the
actual PCA basis vectors: First, there is the mean vector, and thereafter
the correlation structures are presented in the mathematically motivated
decreasing order. The coding is efficient when there is scarcity of latent
variables, but the physical relevance of the features is questionable when
the basis dimension becomes large

resulting functionalities. What kind of nonlinearity to choose, then? It turns
out a good compromise is a function that implements a volatile switch.

x;, ifz; >0
fcutai (x) = { 0, otherwise. (6.9)

This cut function (see Fig. 6.4) lets positive signals go directly through, but
eliminates negative ones. This function is piecewise linear — this offers the-
oretical benefits as between the transition regions linear model structures are
applicable. There exist also strong physical motivations for this selection of
nonlinearity: Whatever are the signal carriers — concentrations, frequencies,
agent activities — such activities can never become negative. In more complex
cases, for example, when modeling gene activation, the cut function is still appli-
cable: Remember that there are excitatory and inhibitory transcription factors
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Figure 6.4: Nonlinearity for
online-blocking of information

controlling the process; there must be excess of excitation to start the process
in the first place, and the more there is excess, the more chromatin packing of
DNA opens up to promote gene expression.

Such a simple form of nonlinearity makes it possible to implement “soft” tran-
sients between structures. When a variable becomes active, a new dimension in
the data space becomes visible. As the nonlinearity is monotonic and (mostly)
smooth, optimization in pattern matching can thus take place among structures.

As explained in [92], locally unstable models become possible because of the
nonlinearity: Extreme growth in variables is limited by the cut functionality.
When combined with a dynamic model, it is possible to implement bistable “flip-
flops”, where minor differences in initial states or in the environment result
in completely differing outcomes. When comparing to natural systems, only
the stem cells are assumedly free of such imprinting; in practice, the evolved
“epigenetic states” can be very stable after such a development has started (for
the coloring of animal fur, see [81]). These peculiarities that are made possible
by nonlinear structures are not elaborated on here; the cut nonlinearity will be
employed in what follows only to boost linearity.

6.2.4 Switches and flip-flops

To see how the nonlinearity can affect the originally linear and well-understood
smooth behaviors, an example is needed. Assume that the “cut” function is
included in the system model so that one has

d¢

7; (1) = Az(t) + Bu, (6.10)

where the visible activities are limited to positive values:

z(t) = fon(§(1))- (6.11)

Applying this model structure, a “comparator system” was simulated with two
mutually inhibitory subsystems:

&i(t) -n -1 z1(t) 7m0 Uy
> = . . .(6.12
( §2(t) -1 -y :L'Q(t) + 0 7 U2 ( )
The negative non-diagonal elements in A matrix implement negative feedback

among the subsystems. In simulations, 73 = 72 = 0.75; this means that the
eigenvalues of the matrix A are \j o =y 2+ 1 or A\; = 1.75 and Ay = —0.25,
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and the linear system without the additional nonlinearity would be unstable,
r1 and zo escaping to infinity, the one in positive and the other in negative
direction. The variables escaping in opposite directions “pump” each other;
as the nonlinearity prevents variables from escaping in negative direction, it
simultaneously stabilizes the positive variable as well.

The simulation results (starting from zero initial values) are shown in Figs. 6.5
and 6.6. It seems that in this framework inhibition and excitation together
define a system where some variables stabilize to non-zero values and other to
zeroes (“winner-take-all”), depending on the input value distribution: Using the
above model, z; wins and x5 vanishes altogether if w1 > us, and vice versa, the
inputs being constant. It turns out that, qualitatively, the behavior is rather
robust regardless of the exact parameter values.

The presented model structure makes it possible, for example, to define a ge-
netic functional “state”. Remember that the gene expression is controlled by
specific inhibitory and excitatory transcription factors, these transcription fac-
tors forming a complex network, all of them being products of the activity of
other genes. Minor changes in input concentrations make the resulting envi-
ronment within the cell completely different: The “flip-flops” take either of the
alternative values depending of the ratio between inputs, and once they have
ended in some state, it is difficult to change it. In this sense, associations to
properties of stem cells are easily made: A cell that has specialized cannot any
more take some other role. Other bonus intuitions are also available: Today,
there is the link missing between strictly biophysical considerations and quali-
tative ones. The purely numeric, quantitative, continuous approaches and the
qualitative and discontinuous approaches are incompatible. The claim here is
that the presented model makes it possible to study emergence of structures.

In the framework that is boosted with nonlinearity, competition among agents
can be intensified: Effects of substructures can be wiped away altogether. Such
extreme behavior is only possible in nonlinear systems because it is due to the
nonlinearities that the system remains stable. Indeed, there emerge alternative
minima depending on the initial values. In complex cybernetic systems, mas-
tering such local solutions is of utmost importance, and rather than studying
individual nonlinearities, a higher-level view is needed.
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6.3 Real world of nonlinearity

The basic neocybernetic model is linear. This was a reasonable starting point as
there is no strong theory for nonlinear systems. Linear structures are, after all,
always easy, as there exist unique minima in a given environment; for nonlinear
systems this does not hold, and typically the results are not identical even if the
environment remains the same. However, nonlinearity is the nature of the real
world, and when the objective is to model it, the modeling machineries have to
accept this fact. So, how to characterize nonlinearities, and, specially, how have
the real systems managed to do that?

6.3.1 What is relevant, what is reasonable

This far, the method has been the starting point, and its properties have been
examined; however, now concentrate on the applications. Now there is the
whole wide world ahead of us, the class of nonlinear functions being infinite and
indefinite, and one should be careful not to open the Pandora’s boz.

To have a balanced view of the problem and the possible ways to attack it,
one can utilize the above discussions, and exploit the cybernetic model of an
existing memetic system: ldeas have been competing in bright minds, and an
equilibrium can be observed. In the spirit of the Delphi method [25], different
arguments have been thoroughly discussed by experts — in the field of artificial
neural networks the problems of capturing “natural data” have been intensively
studied from different points of view (for example, see [36]). This ANN research
is a well-established branch where compromises have been found between what
seems promising from the point of view of representing natural data and what
seems possible and practical from the point of view of available tools, and today,
a “model of models” can be compiled: What are the dimensions of the problem,
what are the interesting applications and promising methodologies. Within
such a memetic “supersystem” the degrees of memetic freedom are manifested,
helping to see the “intra-paradigm paradigms”, combinations of aspirations and
visions, where different points of view are weighted in different ways.

Some advantages can compensate other disadvantages. For example, despite the
theoretical deficiencies, there is so much physiological and mathematical support
for linear structures that today there exists a large body of literature, and still
there is active research in that direction. As a paradigmatic approach, there are
different kinds of algorithms to implement principal component analysis, and,
further, there are different kinds of extensions to the basic models (see [26]).
These studies are motivated by the physiological studies concerning the Hebbian
neurons, and they are further boosted by the strong theoretical intuitions and
interesting applications: The research is still going strong specially in the field
of independent component analysis [41].

Another family of intuitions have motivated the study of feedforward perceptron
networks: It has been observed that within this model structure, all smooth non-
linearities can be approximated, at least in principle. In practice, this unlimited
expressional power is a problem: To select among the alternative functional
structures and to determine the parameters within the selected structure, there
is need for very high numbers of data. Often some additional assumptions are
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(implicitly) employed for pragmatic reasons — for example, typically one limits
the search to smooth mappings. There is also another class of model structures
with equally high expressional power: The radial basis function networks are
based on basis functions, simple prototype functions of localized support (like
Gaussians); when such functions are scaled and scattered appropriately in the
data space, their combined envelope can again be matched with any smooth
function. As compared to the perceptron networks, the basis function networks
are better manageable as the representation there is more local and easier to
interpret.

The above ANN structures have continuous output, and they can be applied for
function approximation; a more special application is pattern recognition, where
one only needs discrete output. There is a very special network architecture that
deserves to be mentioned here because of its close relation to the neocybernetic
discussions concerning dynamic models and balances: In Hopfield networks the
input is given as an initial state to the system, and a dynamic process searches
for the minimum of the energy function, revealing the pattern that is nearest
to the input. The construction of the network is such that it assures that the
attractors of the dynamic process are the stored patterns. However, as compared
to the neocybernetic model structure, now there is no input; the end result is
unique after the initial state (the incomplete pattern to be completed) is given.

All of the above neural network structures are mathematically rather involved;
in the other extreme, there are the intuition-oriented approaches where it is
the actual brain structures and functionalities that one tries to reproduce. One
of such intuitions concerns brain maps: The mental functions have their own
locations in the brain, related functions and patterns assumedly being stored
near each other. The self-organizing maps try to mimic the formation such
(two-dimensional) maps [46]. There are many applications what comes to data
visualization: On the SOM map the high-dimensional data distributions are
often made better comprehensible. As the high-dimensional real-valued vectors
are coded in terms of N integers (map nodes) only, there is extreme data com-
pression, and information loss cannot be avoided. The most interesting issue
about the SOM is that in some sense it seems to match our mental structures
— perhaps there are lessons to be learned here (see chapter 7).

It seems that all ANN methods attack only one issue at a time. To address differ-
ent needs, a compromise is needed; and it can be claimed that the neocybernetic
model can be extended to combine the ideas of basis functions, dynamic attrac-
tors, and intuitive considerations, combining comprehensibility and expressional
power in the same framework.

6.3.2 Models over local minima

For a moment, it is beneficial to look at modeling in the probabilistic perspective.
When seen in the probabilistic framework, the goal of a model is to capture the
data distribution, the model explaining as economically as possible where an
individual data sample is located in the data space.

How can the neocybernetic model be characterized in terms of distributions? It
is not the degrees of freedom alone (as studied in chapter 2) that would capture
the variable distributions; when elasticity is also taken into account, tensions
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pulling the system towards balance, samples tend to become clustered around
the nominal state. Assuming that the scores have normal distribution (being
results of many independent equally distributed random variables being added
together), and assuming that the basis axes are mutually independent, one could
use the multivariate normal (Gaussian) distribution spanned by the degrees of
freedom as representing the behaviors of cybernetic variables. However, natural
data is multimodal, it cannot be represented by a single one-peaked (Gaussian)
distribution — but an arbitrary smooth distribution can be approximated as a
combination of (Gaussian) sub-distributions. Together the candidates define a
basis, so that (if there is enough of them and they are appropriately combined)
one can implement a mizture model. Strictly distinct clusters are implemented
if the representation is sparse (see below).

Thus, the radial basis function metaphor would be applicable here; however,
the structure also suggests more appropriate interpretations. Because the basis
functions are now linear, the vectors ¢; determining the basis functions through
the dot product operation, so that the matching against the input is calcu-
lated as ¢lu, the basis functions have infinite support and there is no finite
maximum. One does not only have a mixture of basis vectors that determine
the distributions, one has “basis subspaces”, determining the directional com-
ponents present in data. The structural components define feature azes to be
exploited by the higher-level model.

This far the model has been assumed linear. If the representation is sparsely
coded, so that only a subset of features is employed at a time (see 6.4), the con-
tributions of some features (the least significant ones) being cut to zero, there
emerge structural alternatives, not all submodels sharing the same components.
The sparse coded structure, where the substructures are linear, becomes piece-
wise linear. When the active components vary, there exists a wealth of candidate
structures. Out of the n available features, in principle one can in the sparse
coded case construct as many structurally differing distributions as there exist
partitionings of the n variables between active and inactive ones. For large n
this becomes a huge number. Such wealth of distributions is difficult to visu-
alize: The sub-distributions are not clusters in distinct locations, and, indeed,
one should not think using intuitions from low dimensions. What does this kind
of a world look like, is elaborated on in chapter 7. In any case, such sharing
of features is versatile, and it helps to reach generality and efficiency of coding;
from now on such mixture of linear submodels is assumed as the prototypical
model when the strictly linear models no more suffice.

When the mixture metaphor is employed as the basis of modeling, some ex-
tensions to the adopted model framework are needed; in a complex hierarchic
system it is not only the highest level that is assumed to be nonlinear, but the
model extension needs to be applied fractally. Before, the models were based
on the linear features determined by vectors ¢;, and stacking of submodels was
straightforward, linear structures being directly summable. Now one needs to
extend to nonlinear features: When seen from above, the mixture model also
defines a “feature” to be exploited by the higher-level model. To facilitate this,
to make the extended model compatible with the linear model, the mixture
model needs to look the same as the simple one, when seen from outside. The
“interface” of the simple model is the latent variable activity, or score of the fea-
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ture, in the form #; = ¢! u; the submodel only delivers one real number to the
outer world, revealing the match of the input data with the submodel. Also the
mixture model has to be manifested in the similar manner to the outside world
when such a model is further being used as a submodel — how to accomplish
this?

The experience with the linear case helps here: The goal of the basic neo-
cybernetic model is optimum match with the environment, and as complete
reconstruction capability as possible so that no variation in the input data is
lost. The latent variable Z; is a measure for how the submodel ¢; alone man-
aged in this matching task, or, indeed, how much this submodel was “trusted”
in this task, the balance of these latent variables being determined through
competition among candidates. When ¢; are interpreted as basis functions, the
outputs Z; represent the matches, or activities of individual, vector Z revealing
the success pattern, determining a coding of the prevailing environment. This
view can directly be extended to the nonlinear case. The whole grid model is
to be collapsed to one number characterizing the fit with the environment; let
this number be called fitness of the model'. When employing the model, the
cybernetic fitness criterion is how well the environment can be modeled, or re-
constructed, and this can be expressed in the form ||?, representing the length
of the reconstructed input vector when the model is used for its reconstruction.
To the outside world, the mixture model thus looks like

T = ¢i(u) = |l (6.13)

where ¢;(-) denotes some scalar-valued function, and |i;| is the contribution of
the submodel 7 in the input reconstruction, when various submodels compete
in that task, and when equilibrium has been found. Remember that this “input
reconstruction” actually means resource exploitation, making the assumptions
about the same goals of subsystems generally justifiable. The value |Z| becomes
zero if the environment cannot be captured at all by the submodels, whereas
if there is complete match, the whole variance of the input data is transferred
further. It is also variance (average of the reconstruction vector length squared)
that is a universal optimality measure in the nonlinear as well as in the linear
case. Discussions concerning information, etc., thus remain valid also in the
nonlinear case. The presented fitness definition abstracts away the implemen-
tation of the submodel, encapsulating it as a black box — indeed, it need not
even be based on the presented mixture structure; there are no constraints as
long as the model structure has mechanisms of producing the estimate ;. This
means that the neocybernetic framework offers a general-purpose environment
for studying very different kinds of coevolving complex systems.

No communication among submodels is needed: The model becomes balanced
just in the same way as in the linear case. No matter how the individual sub-
models are implemented, they compete with each other, exploiting the resources;
better models exhaust the available variation, leaving less resources for others
to exploit. The coordination among submodels is again implemented implic-
itly through the environment, and there is no need for external supervision and
“selection of the fittest” as in traditional clusters-based structures, etc. The
universal “fitness criterion” is the modeling capacity: How well a (sub)model

Indeed, there is a close connection to genetic algorithms here
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can explain (and thus exploit) the environment. Trusting one’s own observa-
tions, or the available remaining resources, makes it possible to implement local
adaptation without compromising the emergence of higher-level structures.

To conclude, the mixture models constitute the basis functions for the next-
level models. In the linear case it was the vectors ¢; that were thought of as
characterizing the submodels, ¢! u giving the matches; in the nonlinear case it
is ¢;(u) that returns the submodel activity.

The operation of the cybernetic model is defined through a dynamic process;
similarly, the mixture model should be seen as implementing a set of such dy-
namic processes. HFach of the submodels that determines a sub-distribution
simultaneously determines an attractor in the data space, hosting a local min-
imum of the cost criterion, where the data matching process converges in fa-
vorable conditions. The final location of the fixed point within the basin of
attraction is dependent of the input data. There are no “strange attractors”
or the like, everything is quite traditional, being based on even (locally) linear
processes and local balances. The proposed combination of linear and nonlinear
structures seems to usually assure unique fixed points in the framework of many
basins of attraction, thus combining simplicity and expressional power. How-
ever, being such a powerful framework, not very much can be said in general
terms about such mixture models; one approach to examine the possibilities,
based on simulation, is studied in chapter 8.

Model consisting of multiple attractors — this seems to be an appropriate way
to model complex natural systems, too. Remember that nature is working in a
distributed way, there is no central design unit: Finding the absolute optimum in
a complex environment is just as difficult for nature as it is for humans. Nature
is so varied because different solutions have ended in different local minima of
the cost criterion. Perhaps a cybernetic model constructing a multiple model
characterization over the alternatives better captures the natural diversity of
natural systems? The cybernetic model can be seen as a compressed model
optimized over local candidate solutions. This is a major difference as compared
to traditional modeling where it is the only global optimum that is of interest.
Remember that many problems of computability theory are concentrated on
the NP-hard problems that are practically undecidable in large systems — but
rather good local minima are easily found.

6.3.3 How nature does it

The mixture model seemingly has a complex hierarchic structure of submodels.
Does such a “model library” need to be stored in some centralized location
and maintained by some master mind? The answer, of course, is no — nature
routinely runs such mixture models in a distributed manner.

Traditionally when deriving clustered basis function models, the key challenge
is to determine the locations and the outlooks of the basis functions. Now it
is the competitive learning among agents that carries out the matching against
the environment in a distributed manner: The basis functions themselves are
composed of still simpler basis functions — the agents themselves. When look-
ing at cybernetic systems, it is important to recognize that it is not only one
system that is running at a time: It is typically populations where there are
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individual more or less identical subsystems. This populations-based structure
is quite universal, and it applies fractally to all levels of the systems: Within
an ecosystem there is the large number of separate species, and within a species
there are the individual animals?; in an economy there are the companies, and
within the companies there are the humans; in a tissue there are the cells, and
in the cells there are the chemical molecules.

Nature implements the whole mixture model in a parallel fashion, running the
subsystems side by side, and constantly evaluating the performance of them.
Optimization in such a structure is completely distributed. Each individual
represents a local optimum having adapted to match its local view of the en-
vironment; the number of individuals representing a single solution reflects the
relative goodness of the solution candidate, a good solution (or niche) being ca-
pable of supplying more resources to share. It is the whole set of functionalities
that together characterize the nonlinear system of systems — the final mixture
model representing a human, for example, being a coordinated-looking compo-
sition of the functions of its subsystems. Regardless of the distributed nature of
the structure, the non-coordinated submodels can still share common features
if there exist statistically consistent properties visible in the environment (see
chapter 10).

There is no need of explicit coordination whatsoever — the mixture model is
a simple extension of the linear case that was already shown to self-regulate
and self-organize. As interactions with the environment are crystallized in the
activity patterns, it is the feedbacks through the environment that assumedly
again can accomplish the regulation task. What is more, all agents agree upon
the goodness criterion — maximum activity and exploitation of the environment
— and after that explicit coordination is no more necessary as the structure
assumedly emerges from the competition. Whether or not some structure truly
emerges in such a system is a difficult question — yet, the practical experience
seems to support this hypothesis.

As a more abstract example, think of a formless social or memetic environment
where it is difficult to uniquely quantify the structure or the variables. As
studied in chapter 4, the neocybernetic view offers an escape here: It is the
subjective individuals or individual minds that anchor the environment in the
realm of observables. The population of minds determines the outlook of the
constructivistic world, or the model for it — and, indeed, without this model
the world itself would not exist!

The seemingly inaccurate and non-optimal mechanisms of representing the prop-
erties of individuals — genes in a biological system, and memes in a memetic
one — seems to be nature’s way to assure that not all submodels can end
in the same local optimum. When there is no continuity among representa-
tions, separate individuals more probably produce different outcomes, ending in
separate local minima of the cost criterion. Differences in genes span new di-
rections in the high-dimensional property space, mutations perhaps augmenting
this space, introducing new functionalities. Yet, there is some continuity, as it
is the combination of the parent’s genes that characterizes the offspring, mak-

2The ecosystem consists directly of the individual animals — the level of “species” is
motivated for pragmatic reasons, because the spread of genetic information is limited by the
species boundaries
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ing the mechanisms of property inheritance more continuous, facilitating some
level of simple parameter tuning even within a fixed structural framework. The
genotype just determines the framework, and it is the dynamic interplay among
the system and its environment that determines the outlook of the final pheno-
type. On the other hand, as the personal catastrophes (deaths of individuals)
are non-synchronized, statistical properties of the population do not change
abruptly, and the adaptation of the population becomes smoother. The non-
linear environment becomes modeled by local attractors; in a converged model
the submodels are rather densely located, exhausting the information available
in the environment more or less continuously.

The Darwinian mechanisms that come here to play to exploit the submodels,
implementing the adaptation of the population level mixture model, good solu-
tions among submodels being promoted in the mixture. The basic structure of
an individual is determined by the genes, and within that framework, the famil-
iar neocybernetic adaptation processes assumedly have tuned the parameters
so that it is the best that can be achieved within that framework, so that the
structures, and thus the underlying gene combinations, can be compared in an
objective way. However, the idea of “survival of the fittest” is not so categorical
as it is normally thought to be: Best solutions dominate, yes, but the outper-
formed ones also can survive, making the view of the reality more complete.
Indeed, samples far from the mainstream solutions can carry very much valu-
able information. There are no outliers among the reproducing individuals, all
models are valid: If an individual has survived so long, there must be something
special about it; it is the whole adolescence that is there to filter out the actual
mistakes. What is more, one needs to remember that the environment is not a
predetermined entity, but it consists of other ever-adapting subsystems, and a
stubborn individual can change its environment to make a new personal niche
exist.

The role of birth and death are very central in Darwinian evolution theory.
Now the system is more important than any individual; life is in the system,
and in the population of individuals. As long as the system survives, there is
no actual death. Another point is that because the genes only offer the pool
of alternatives, the properties of an organism being mainly determined by the
environmental conditions, one specific gene combination does not have such a
crucial role.

Comparing to the Darwinian theory, again there is the fit criterion that plays
a central role. However, now it is not about the search for the absolutely best
fit — the population-level system searches for a set of good fits to implement a
good mixture model, to better capture all aspects of the nonlinear environment.
Indeed, the essence of modeling of the environment is not to find the actual
winner, but to find the definition of what fitness is and map the whole “fitness
landscape”. And the primary reason for diversity is not to be prepared for the
unknown future — the reason is simply to exploit the prevailing environment as
efficiently as possible, now and here, with no future prospects. The traditional
Darwinian thinking suffers from a intellectual discrepancy: Whereas the evolu-
tion mechanisms and fitnesses are defined on the level of individuals, the results
are visible and meaningful only on the emergent level of the whole population.
Whereas the lower and higher levels are traditionally incompatible, now both



6.4. More about sparse coding 159

levels are combined in the same model framework, the individuals being sub-
models that together constitute the systemic model of the species — and the
individual species further being submodels that together constitute the systemic
model of the ecosystem. Thus, one can proceed from the analysis of individuals
to analysis of populations, and from the analysis of species to the analysis of
ecosystems; and if one can extend from the analysis of the existing taxonomies
to the spectrum of possible ones, from characterizing details to seeing larger
patterns, perhaps biology (and ecology) someday become real sciences.

There also exist less concrete populations where the same cybernetic ideas still
apply. In a scientific world, for example, being capable of seeing similarities
among individual paradigms and combining them in a larger model is similarly
a central goal; rather than going deeper into the paradigmatic system, one tries
to find more general systems connecting paradigms. In some environments the
submodels need not be co-existing and parallel: The “populations” can be, for
example, sequential, as it is often the case when speaking of human cultures.
However, memetic systems leave signs of themselves, scriptures and artifacts,
and as long as these signs can still be deciphered, faiths of various cultures can
be reconstructed, and these cultures can be understood as consistent systems.
Indeed, being based on such submodels, the highest-level memetic system can
become alive — being manifested in a truly cultivated person. The human ca-
pacity blooms when one can put things in a perspective, constructing a balanced
model of all aspects and dimensions of human culture: The human endeavor is
to truly know what it is to be a human, and to understand how the human is
connected to the world around him/her. It is not about memorizing details; it is
about having a compact model where the individual facts have been combined
into more general dependency structures.

6.4 More about sparse coding

For a moment, return to the linear case — it turns out that closer analysis gives
insight to understand the general case, too, and the linear submodels efficiently
support the emergence of the localization in the nonlinear global model.

It has been observed before that a cybernetic system implements principal com-
ponent analysis, the submodels representing the (local) observations in terms of
(global) variation structures. This is a simple result, as PCA is a mathemati-
cally rather trivial operation. Is there nothing else to be said about cybernetic
data processing? Indeed, the PCA view is not the whole truth, it only deter-
mines the framework for data compression. Within the compressed data space,
it is the selection of the latent basis that plays a major role when interpreting
the results.

6.4.1 “Black noise”

In chapter 3, connections among Z and @, and among Z and Au were studied.
When studying the theoretical mapping between Z and the original undisturbed
input u, it turns out that the eigenvalues of E{ZZ!} can be expressed in terms
of the n most significant eigenvalues \; of the original data covariance matrix
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Figure 6.7: Consequences of adding “black noise” are opposite to white
noise: The variation decreases in all directions — if possible

E{uu®}, as observed in chapter 3. Specially, if the coupling coefficients ¢;
and b; are different for different neurons, the ¢’th eigenvalue (or latent variable
variance) becomes

Vaidi—1 (6.14)

b; ’

indices ¢ and j being ordered randomly. This reveals that there must hold
giAj > 1 for that input variance direction to remain manifested in the system
activity — if this does not hold, variable Z; fades away. On the other hand,
for the modes fulfilling the constraint, interesting modification of the variance
structure takes place; this can best be explained by studying a special case.
Assume that one has selected ¢; = A; and b; = 1 for all pairs of ¢ and j. Then
the corresponding variances become

A — 1 (6.15)

In each direction in the data space, the effect of the system is to bring the vari-
ance level down by a constant factor if it is possible (see Fig. 6.7). Analogically,
because white noise increases variation equally in all directions, one could in
this opposite case speak of “black noise”.

What are the effects of this addition of black noise in the signals? First, it
is the principal subspace of u that is spanned by the vectors ¢;. But assum-
ing that this subspace is n dimensional, there exist many ways how the basis
vectors can be selected, and some of the selections can be physically better mo-
tivated. For example, in factor analysis the PCA basis vectors are rotated to
make them aligned with the underlying features, and the same idea takes place
in independent component analysis. In factor analysis, it can be assumed that
the underlying features can be characterized in mathematical terms applying
the idea of sparseness: When a data vector is decomposed, some of the latent
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variables have high scores while the others have low scores, increasing the differ-
ences among latent variable variances. This goal can be iteratively implemented
in terms of criteria like varimaz or quartimaz, etc. In its extreme form, spar-
sity means that there are only a few of the candidates employed at a time, and
the goal of modeling, rather than being minimization of the number of over-
all model size, it is the minimization of simultaneously active constructs. This
means that the total dimension of the latent basis n can even become higher
than the dimension m of the input data, the basis being overcomplete.

As shown in Figure 6.8, the Hebbian feedback learning offers an efficient ap-
proach to achieving sparsity-oriented basis representation of the PCA subspace.
Whereas the overall captured variation (shown both in yellow and red color in
the figure) is not changed by orthogonal rotations, the variation over the bias
level (shown in red) can be changed. As the nominal PCA approach typically
distributes variation more or less evenly along each latent variable, it is most
of the variation that remains below the threshold level; now, as it is the area
above the threshold level that is maximized, non-trivial basis representations
are reached. When doing sparse coding, one can have n > m.

There are no closed-form expressions for implementing sparse coding for given
data — there are only iterative algorithms. It seems that the algorithm proposed
by the Hebbian feedback learning offers a compact and efficient alternative (see
Fig. 6.9; compare to the algorithm in 6.2).

In the algorithm, the fixed states are first solved; because of the assumed lin-
earity, infinite iteration changes into a matrix inverse. Actually, the linearity
assumption here does not exactly hold: To make the sparse components differen-
tiate, the cut nonlinearity is applied for Z, and, in principle, the matrix inversion
does not give the fixed point (however, the system tends towards linearity; see
below). The determination of Xbar is an extension of that in Algorithm 1,
making the matrix inverse better invertible:

T =B{I +zz" Y 'QE{zu" } u. (6.16)



162 Level 6. Structures of Information beyond Differentiation

while ITERATE

% Balance of latent variables
Xbar = U * (inv(eye(n)+Exx)*Q*Exu)’;

% Enhance model convergence by nonlinearity
Xbar = Xbar.*(Xbar>0);

% Balance of the environmental signals
Ubar = U - XbarxExu;

% Model adaptation
Exu = lambda*Exu + (1-lambda)*Xbar’*Ubar/k;
lambda*Exx + (1-lambda)*Xbar’*Xbar/k;

Exx

% Maintaining system activity
Q = Q * diag(exp(Px(Vref-diag(Exx))));

end

Figure 6.9: Algorithm 2: Feedback Hebbian SCA by “selfish agents”

This is solved observing the loop structure, and exploiting (3.36). One can
add the triangularization of the covariance matrix Exx here, too, to separate
the components. The matrix @ is diagonal; “proportional control” with P as
the control parameter is applied for (logarithms of) variable variations to keep
the variation level of the variables in reference (Vref is the vector of reference
values). Because the elements at the diagonal of @ are distinct, the components
become distinguished, as discussed in chapter 3, and rather than implementing
sparse subspace analysis, the algorithm implements sparse component analysis.
Finally, after convergence the mapping of the model can be expressed as ¢7 =
QE{zu’}.

The neocybernetic algorithms can also be characterized in terms of mathemati-
cally compact formulas and theoretically powerful concepts. The sparse compo-
nents represent (linear) submodels that together characterize a complex domain,
perfectly matching the nonlinear case in 6.3.2. Summarizing, one can say con-
clude:

It is the “clever agents” applying Hebbian/anti-Hebbian learning
that implement theoretically correct principal component analysis
that can be explicitly employed for theoretically optimal least-squares
regression; the “selfish agents” applying feedback Hebbian learning
implement sparse component analysis and simultaneously implicitly
carry out robust regularized least-squares regression to control the
environment.
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This far all has been linear, the sparsity pursuit being implemented only through
basis rotations. When the cut nonlinearity is included in the algorithm, cut-
ting the minor (negative) variations explicitly to zero, only then the algorithm
becomes strictly nonlinear. It turns out that the convergence properties of the
algorithm can be enhanced considerably then. Because of the optimized rota-
tions, one already has minimized the cross-cluster effects, and for “typical” data
located in such clusters, there probably are no crossing-overs between linear sub-
models. Structure changes are located in deserted regions in space, and rather
than being piecewise linear, the model is “practically linear”. In the converged
system, the role of nonlinearity is rather transparent. But there is more.

The nonlinearity that is introduced in the structure does not make the system
essentially more complicated. When studying closer the data processing (again
see Fig. 3.3), it is interesting to note that the nonlinearity that is now applied
is outside the inner loop, just filtering the incoming information. The basic
functionality of the system is still determined by the closed loop as shown in the
figure, converging so that the best possible linear matching between the realized
T and Aw is implemented, however these signals are externally deformed. This
means that despite the nonlinearity, the model tends back towards linearity and
statistical optimality.

6.4.2 Towards cognitive functionalities

Modeling of the environment is common to all cybernetic systems. The proper-
ties of the environment — like nonlinearities — are best quantifiable when the
system resides in infosphere, the signals being better commeasurable, and the
existing data structures are intuitively comprehensible.

Example: Modeling of biped walking

When studying the geometric structure of limbs, it is evident that the dynamic
model for them is highly nonlinear. Still, to keep a two-legged body stable,
very precise control is needed. Whether such control structures can be based on
linear submodels that are tuned applying measurement data, was studied in [34].
The available data consisted of state vectors characterizing the orientation and
velocities of a simplified two-legged structure and its relation to the surrounding
world. The nonlinearities in the adopted model structure were distributed in
substructures; it was assumed that the nonlinearities are smooth, and “nearby”
data samples share the same locally linear model — that is, the observation data
was first clustered, and data within each cluster was used to construct a local
linear model. Because of the high assumedly redundant dimensionality of the
data, the linear models were based on PCA compression of the observation data,
and the motion controls to achieve the walking gait were thereafter reconstructed
applying principal component regression based on that model.

It turned out that the clustered model could reproduce the motion controls in a
satisfactory manner, and the simulated motion remained in control. However,
the model was not quite satisfactory: From the cognitive point of view, the
model structure was not very plausible. There was the predetermined struc-
ture with separate levels of inter-cluster and intra-cluster operation — coarse
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Figure 6.10: The 25 sparse components extracted from the handwrit-
ten digits (random ordering). It seems that different kinds of “strokes”
become manifested (see below)
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Figure 6.11: How the different digits (left) are represented by the 25
sparse-coded features (above). For example, it seems that feature #14 is
only active when the input pattern is “0”, feature #22 when it is “1”, etc.
Feature #13 correlates strongly with “2”, as the other patterns seldom
occupy the bottom rows. Some patterns have various alternative forms
(like “3” is represented either by the feature #6 or feature #19). For
most of the input patterns there are no unique matches — they must be
composed of parts (for example, “4” seems to be a sum of features #12
and #18). Whether or not the features are disjunctive or conjunctive is
determined by the optimization machinery as the data is processed



6.4. More about sparse coding 165

matching against the clusters, and after that the fine tuning against the cluster-
specific submodels. It seems that some higher-level control is necessary here
during the model usage as well as during model adaptation. However, it turns
out that this is not the case.

As discussed in chapter 7, a grid of linear Hebbian neurons implements the
neocybernetic model, modeling the nonlinear environment. Hebbian feedback
learning implements the PCA compression of the data, constructing a sparsity-
oriented model. Sparse coding results in differentiation of the substructures,
or emergence of localized “clusters”. Within this framework explicit control of
clustering or selection among submodels can be avoided because of the competi-
tion among substructures, the best matching submodel automatically receiving
most of the activation. There is contribution also by the lesser submodels —
this means that there is smooth transfer between submodels in the data space.

What comes to the cluster-based representation of nonlinearities, there is also
no need for additional functionalities in the neocybernetic framework. Still,
there are challenges: How to implement the input—output structure so that the
regression onto the control signals can be implemented in a plausible way? And
how to implement optimization towards smoother and faster movements beyond
the available prior behaviors?

Structures in infosphere

To illustrate the structure based on sparse codes in more abstract terms, again
study the case of hand-written digits (see Sec. 6.2.2). Each of the latent variables
T; was kept active by appropriately controlling the coupling factors ¢;. Figure
6.10 shows the results when applying the presented algorithm (see also discussion
in Fig. 6.3), and Fig. 6.11 presents how the converged features were oriented
towards the input patterns. Note that the goal of this coding is not to distinguish
but to find similarities — that is why the received feature model is probably
not good for classification tasks.

The behaviors in this experiment differed very much from those when applying
principal component coding: During the convergence process, in the beginning,
something like clustering emerged, each data region being represented by a
separate variable; as adaptation proceeded, the features started becoming more
orthogonal, and patterns were decomposed further. What is interesting is that
this kind of “stroke coding” has been observed also in the visual V1 cortex
region in the primate brain (see [29] and [59]): It seems that the visual view is
decomposed into simpler, statistically relevant substructures.

What if more complex data is modeled applying the same kind of sparse coding
schemes? This was studied using textual documents. There were some hundred
short descriptions of scientific reports on different aspects of data mining. Very
simple representation of the texts was selected: It was assumed that the docu-
ments can be characterized by the set of words that is found in their descriptions.
Data dimension was huge as there was one entry for each of the words in the
data vectors. The document were represented by their “fingerprints”, or data
vectors containing their word counts. After some data preprocessing (see [92]),
sparse coding was applied, and the resulting sparse structures representing the
correlation structures among the words are shown in Fig. 6.12. It seems that
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Figure 6.12: Results when textual material (documents on “data min-
ing”) are modeled applying sparse coding techniques: It seems that the
emerging data structures capturing the correlation structures among the
words are generalized keywords characterizing the different dimensions
in the documents. The nine keywords are projected against the original
words that are listed on the horizontal axis in alphabetical order; long
bars denote high relevance. The keywords are named afterwards after
studying the semantics of the words characterizing them.

the extracted data structures can be used to bring structure even to this seman-
tically complex domain: Different documents can be represented as weighted
combinations of the contextual “strokes”.

Even though one should be careful about too strong conclusions, these exper-
iments still motivate excursions to truly challenging domains of cybernetics,
namely, to the world of cognitive systems — this is done in the next chapter.



