Level 7

Cybernetic Universality
and Lives mn Phenospheres

It seems that living systems carry the intuitive connotations that characterize
cybernetic systems in general. The key question then becomes what is life.

The problem with life sciences is that there exists only the one example, the
carbon-based DNA life available to us for analysis. The goal here is to extend
from life as we know it to life as it could be, from traditional biological systems
to “bio-logical” ones, where the logic follows the relevance-oriented, cybernet-
ically motivated lines of thought. Indeed, one could define universal life as
higher-order dynamical balance in the environment, whatever that environment
happens to be. The definition covers, for example, living systems in the chemi-
cal environment (lower-level life) and and in social environments (higher levels
of life). Because of the very compact structure of cybernetic models, different
systems become formally analogous, and when interpreting a system’s behaviors
in another framework, some fresh intuitions can be available.

Concrete examples are the best way to present the challenges. In this chapter,
infosphere will be exclusively studied: After all, the cognitive system is well
understood — or, at least, it has been studied very much. Specially, it will be
studied what is the interpretation and essence of the sparse-coded mixture mod-
els (chapter 6) in that domain. And perhaps understanding the peculiarities of
systems in such a complex environment helps to see the possibilities of evolving
life in general: Indeed, when a living system is defined as above, the universe is
full of strange life forms — literally, what you can imagine, it exists.

7.1 Modeling of cognition

The neocybernetic framework not only allows modeling of the coding of individ-
ual patterns, it can perhaps give tools to attack the functioning of the complete
brain. There is the intuition backing up us here: The cognitive system simply
has to be cybernetic — even in various ways (see [30], [53]).
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7.1.1 Population of neurons

For simplicity, assume that the brain consists of identical neurons that follow
the Hebbian learning rule [37]. It is evident that Hebbian learning exactly
follows the same evolutionary learning principle as presented in chapter 3: If
the neuronal input and the neuronal activity correlate, the synaptic strength
increases. Indeed, the Hebbian neurons are paradigmatic examples of cybernetic
agents, the “resources” now being the incoming signals. Employing the idea of
looking at the neurons as a population of competing individuals, one can see the
neuronal “ecosystem” as a self-regulative entity. No central control is necessary,
nor some “operating system”, it is all about a distributed agent-based pursuit
for activation. This competition becomes is very concrete: It has been observed
that there are nerve growth factors that control the “wiring” of tissues; here it
is the winner neuron(s) only that prosper, and become connected.

But it is the inter-neuronal connections where an especially delicate control is
needed. Let us study a scenario. Suppose that there is a pool of more or less
occupied neurons available competing for activation. If there is currently very
little activation coming from outside to a neuron (E{Z?} remaining low), the
neuron’s internal feedbacks make it search for more activation (the coupling
factor ¢; increasing; compare to the algorithm in Sec. 6.4.1). The “hungri-
est” winner neuron (or the winners if there is plenty of activation to share)
connects itself to the sources of temporary activation, essentially coupling the
simultaneously active input signals together!. The winner neuron hopefully be-
comes satisfied and less “hungry”, exploiting the resources (signals) thereafter
allocated for them. That neuron (or set of neurons) starts representing the
corresponding association structure, defining a (subconscious) “concept atom”.
If such activation patterns are relevant, if they occur sufficiently often so that
the corresponding neurons do not starve in the loss of activation again, these
memory structures remain valid also in the long run; otherwise the association
is volatile, fading gradually away. As atomary concepts are connected to previ-
ously activated ones, sequences of concepts emerge. In the long run, the original
time structure becomes ripped off: The sequential chains of neurons becomes
a parallel group of simultaneously active neurons, competing for more or less
the same input resources, and some kind of a semantic net emerges. Because of
identical correlations-based learning in all neurons, the connections in the net
gradually become bidirectional, and an “associative medium” is constructed,
being available for yet other (still more elaborate) concept atoms to be con-
nected to the available activity centers in the medium. Lower-level concepts are
inputs to higher-level concepts — but as time elapses, structures become cyclic
and more or less blurred, the network becoming “panexplanatory”.

This all is more or less trivial — the added value, the main contribution of the
neocybernetic perspective, comes from the ability of explaining how the above
declarative representations change to associative ones, or how the shift from
novice to expert can be explained. The key functionality is the self-regulation
and self-organization property of the Hebbian feedback system: As the Hebbian
adaptation takes place, locally and independently in each synapse, the declar-
ative structures become swallowed in the associative medium. As correlating

IThe overall activity of the network remains constant — when there is no external activa-
tion, as in sleep, the system becomes activated by random noise
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concepts are appropriately connected together, links of the semantic net become
denser and numerically optimized.

The above process of automatization is the key process in the mental system.
This all sounds very simple, even a bit simplistic, and indeed this is not the
whole story. The mental machinery is not there only for data packing.

7.1.2 Role of semantics

When proceeding from the level of signal processing to processing of information
and knowledge, one is facing new challenges, because one needs to address issues
that are the most relevant to the human mind: A cognitive model is void, its
essence escapes, giving rise to Chinese room type arguments [70], if it does not
somehow capture the semantics of the constructs. One needs to extend from the
infosphere, where it was simply data (co)variation that needed to be captured,
to “ideasphere”. The units of information to be modeled are indeed knowledge;
mental models should somehow capture “information flows of information”.

Cognitive functionalities, like intelligence, are emergent phenomena. It is as-
sumed here that intelligence is an illusion that emerges when a large number
of simple structures cumulate. For analysis, one needs to be capable of re-
ductionistically decomposing the cascaded system hierarchy into self-contained
entities. It is here assumed that the principles remain the same also on the new
emergent level, so that the processes can be reduced back to processing of data.
Now, assuming that these simple structures are individual cybernetic models
for subdomains, how to avoid the infinite recess, concentrating on a single level,
truncating the succession of models? In other words: How to assure that the
data delivered to a cybernetic system constitutes a “cybernetic closure”? How to
fix the grounding of semantics, or make the concrete data contain the necessary
“atoms of semantics”?

The concept of semantics needs to be formalized at some level. When pro-
cessing signals, the relevant information being expressed as (co)variation, one
concentrates on contextual semantics, where the meaning of the structures is de-
termined in terms of their interconnections, finally reducing back to the system
inputs (naturalistic semantics). For a cybernetic system, however, this kind of
static definition is not enough, one once again needs to extend the studies to
dynamic domain to have a grasp of cybernetic semantics. It was balances that
were the key issue in neocybernetics, and the cybernetic models are models over
such equilibria. These balances need to be buried in data, or, the data needs to
be made balanced.

Again, it is the dynamic equilibria and tensions that are the basic notion here.
In each state there is a tendency to move in some direction; this “flow” is propor-
tional to the unbalanced tensions in that state, and can be utilized to quantify
the counteracting forces. Such tensions are also visible in the observation data:
State changes, or differences between successive states are proportional to the
flow. When such derivatives are included in the data, they represent the addi-
tional compensating forces and using them it is possible in that state to reach
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Original configuration Actual move = state change

Hot spots (threshold 0.05) Hot spots (threshold 0.1) Hot spots (threshold 0.15)

1

Figure 7.1: Reconstruction of the board and visions of the future in the
beginning of the game

the cybernetic balance among data:

i = ( oty )~ (st ) (1)

Such “preprocessing” of observations, emphasis on changes or differences be-
tween successive ones, can also be motivated in terms of psychological and neu-
rophysiological studies — constant inputs become saturated, changes in sensors
are better detected. From the control point of view (see 7.2), there are also
connections: If the variables contain the derivatives in addition to the absolute
values an (extension) of (multivariate) PD control can be implemented. Math-
ematically one could speak of the complete set of variables as spanning a phase
space. Comparing to mechanical systems, if the original variables are “gener-
alized coordinates”, together with the derivatives they determine the system
state.

As an example of the relevance of the above discussion study a case where chess
configurations are modeled. Chess is the “banana fly” of cognitive science, being
a simple domain, but still being far from trivial. There were some 5000 config-
urations from real games used for modeling?. The coding of the configurations
was carried out so that for each location on the board (altogether 8 x 8 = 64)
it was assumed that there are 12 different pieces (at most) that can be located
there, and for each of them there was a separate entry in the data vectors.
This means that there are altogether 64 x 12 = 768 binary entries in the highly
redundant data vectors — and when the derivatives were included and v’ was
defined as in (7.1) the data was 2 x 768 = 1536 dimensional. The sparse coding
algorithm in Sec. 6.4.1 was applied for the data with n = 100, so that 100 chunks
(as the memory representations are called in cognitive science) were extracted.
After convergence typical chess configurations were reconstructed as weighted

2T am grateful to Professor Pertti Saariluoma for the data material and for encouraging
discussions
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Original configuration Actual move = state change

Hot spots (threshold 0.1) Hot spots (threshold 0.15)

Figure 7.2: Reconstruction of the board and visions of the future at some
later phase in the game

sums of the chunks: In Figs. 7.1 and 7.2 the results are presented. Visualiza-
tion of the high-dimensional data structures is a challenge — in the figures, the
modeling results are approximatively illustrated by projecting the numeric rep-
resentations back onto the discrete-valued board realm. On the leftmost images
in the figures, the observed chess piece configurations u(k) are presented: On
top, there is the outlook of the original board, and on the bottom, there is the
reconstruction when using a storage of only 100 numeric chunks that are appro-
priately stacked on top of each other. In such a typical case, almost all pieces
can be correctly recalled (the vector 4(k) is thresholded so that only pieces with
relevance @; > 0.5 are shown). The remaining images illustrate the “fow” of
the game, or derivative %(k) in the current state k: Again, on top, there is the
observed change in the configuration, and on the bottom, there is the estimate,
visualized applying three different threshold levels. The pieces upside down de-
note vanishing pieces. Note that the reconstruction is purely associative, and no
check for validity is here carried out, so that some “ghost spots” also exist. On
top of the associations, higher-level reasoning would also be needed to screen
the reasonable moves.

It seems that when cybernetic semantics is incorporated in the data, some cogni-
tively relevant functionalities can be emulated: For example, it becomes possible
to attack the challenges of attention. It turns out that the “hot spots” in Figs.
7.1 and 7.2 are located rather appropriately, and, as it turns out, it is indeed
the expert-selected move that has a strong representation. The results remotely
remind the mental operationing of a real chess expert: It is known that chess
experts only concentrate on the “hot spots” on the board. This kind of attention
control has not been satisfactorily explained. Of course, the current experiment
only studied very elementary patterns on the board, and to capture phenomena
like functional chunks, to reach towards really “understanding” the game, one
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could introduce more complex (cybernetic) preprocessing of the observations *:

- (28)

X

It is interesting to note that it has been claimed that some 50000 chunks are
needed to satisfactorily represent the chess board [17]. Now the numeric nature
of the chunks and inherent optimization of the representations makes it pos-
sible to reach a much more compact model for a domain. What is especially
interesting is that the errors that the model made were cognitively credible and
“expert-like”.

7.1.3 Epistemology of constructs

In today’s artificial intelligence (AI) paradigms (like in semantic webs and ear-
lier in expert systems), it seems that one is interested in ontologies. However,
the essence of knowledge is not in the objects but it is in the ways of conceptu-
alizing and representing them. What kind of epistemologies are dictated by the
underlying “wetware”? Or, more appropriately: What kind of structures are
dictated by the cybernetic machinery and data distributions? In Whorf-Sapir
theory it is observed that concepts are the basis of cognitive phenomena; now
the emphasis is on the structures beyond the concepts.

First, the mathematical structures can be compared to cognitivistic models.
Perceptions are lower-level observations that are filtered through the mental
model. In concrete terms, T; determines the relevance of the concept (cate-
gory/attribute) number ¢ when perceiving the input. As seen in another per-
spective, the sparse coded momentary weights Z; stand for the cognitivistic
notion of short-term memory, containing “indices” to long-term memory con-
structs. These LTM constructs are the profiles ¢; expressing the elementary
patterns of exhaustion of available activation. Sparsity is manifested as STM
capacity. This scheme is completely distributed and locally controlled; the com-
puter paradigm with its centralized registers, memory units, and data transfer
among them, can be abandoned in this framework. The cognitivistic emphasis
on constraints is well in line with the cybernetic assumptions: Without limita-
tions to allocated capacities, there would be no need for optimization, and there
would be no need for emergence of abstracted models.

As it is assumed that it is essentially the same Hebbian perceptrons that imple-
ment all the functionalities, there is the common neural basis of the cognitive
constructs, dictating their structure. The “conceptual spaces” (see [31]) are not
based on clusters in the data space but on optimized axes of degrees of freedom
determined by the linear sparse-coded features. Because of this uniformity, it
must be so that for example categories and their attributes have essentially the
same kind of structure, each determining the other: The resulting epistemology
of categorization differs from traditional views (see [66]). Categories being com-
binations of attributes (features), and the attributes are each other’s attributes,

3For example, a variable where one would have a weighted sum of all own pieces, minus
weighted sum of all opponent’s pieces, would make it possible to include a gross evaluation of
who is leading the game; tension towards maximum of this variable would directly incorporate
the “will to win”
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determining their contents. Concepts are models abstracted upon examples, so
that observations can be explained as economically as possible when employing
them; these “concepts” are subsymbolic, but they change to symbolic if their
relevances exceed the threshold. Still, all of these structures are numeric rather
than symbolic, “fuzzy” rather than distinct, all processing taking place on the
numeric level. From the theoretical point of view, it is nice that such collaps-
ing of class structures makes the paradoxes of the Russell type impossible —
there are “sets of sets”. As seen from another modeling point of view, it turns
out that the “is-a” hierarchies and “has-property” structures become unified.
The uniformity and uniqueness of mental structures extends to all levels and
conceptual constructs: Also subclasses, and, specially, instances of classes, are
similarly represented as interconnected degrees of freedom (see Figs. 7.3 and
7.4):

A dog is a subclass of a pet, and Fifi is a subclass of a dog —
but, simultaneously, a dog is a part of the contents of a pet, and
Fifi is part of dog. Inheritance is not hierarchic but becomes a
network: Examples of a dog determine what brown color is like, and
the concept of brown partly define what dogs are like. Speaking of
dogs activates associations to pets, and vice versa.

This means that the framework of fuzzy subsets offers an appropriate framework
for mental constructs — subclasses belong to superclasses, but also superclasses
belong to subclasses. The subclasses characterize the properties of the superclass
to some extent. Fuzziness seems to be an appropriate word to characterize
categories, distinct categories are just our way of explicating the world. How
colors are see, for example, is dependent of the culture: In some cultures specific
concepts do not have relevance. This fuzziness applies also to other cybernetic
systems outside the cognitive one. As Theodosius Dobzhansky has observed,
“the problem of what is a species is among the most acute in biology”. Concepts
are just attractors in the surrounding infosphere, or they are not.

The model of the cognitive structures is comprehensive, also including feelings,
etc. Feelings also have their contents, their semantics being defined in terms of
connections to prior experiences — and the contents of other experiences are
flavored by the feeling attributes. The difference with feelings is that they seem
to be more physical and “deeper” than concepts in general, being bound to the
chemical realm: Typically a part of their contents is related to levels of adrenalin,
etc. The key point in cybernetic models is that all information is used and all
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correlations are modeled. When signals are not existing purely in the infosphere
but also, for example, in the chemosphere, a tight web of connections to the
environment is constructed, constituting a grounding of “self”. If associations
become reconnected, the contents of the feelings can also change — neuro-
linguistic programming (NLP) can truly change the way we see the world.

Concepts are names of categories; they are statistically relevant constructs ab-
stracted over individual observations, dependency structures that become ad-
dressed, attractor structures that have sustained the tensions in info/ideasphere.
The traditional dilemma — the gap between symbolic and numeric representa-
tions — is solved because it is manipulation of numbers that makes distinct
structures (symbols) emerge from data: Symbols are attractors of the dynamic
processes that carry out the data processing. To “bootstrap” an appropriate
concept structure, a delicate iterative process is needed. Explicit programming
of the concepts is possible, declaratively defining the connections to other con-
cepts, but mere structures with no relevance fade away. There need to exist the
structures to instantiate the dynamic processes, but according to the principles
of constructivism, the structures need to be relevant to flourish. As the poet
says: “you can only teach what already exists in the in the dawn of the student’s
understanding”. Without guidance, if the concept formation is completely left
to the student (as is the tendency in today’s pedagogics), the emergent struc-
tures become more or less random, as the syntactic categories cannot uniquely
be determined based on the examples alone.

Above, the data samples are identified with “observations” or “sensations”, and
the results are (artificial) “perceptions” (vectors u and x, respectively), etc.
Such direct interpretations of data structures as constructs in cognitive science
are rather bold — but in the cybernetic sense they are accurate enough, be-
ing relevant attractors carrying the correct intuitive connotations, details being
ripped off. In the similar manner, there also exist more ambitious consequences
that seem appropriate.

7.1.4 On expertise and consciousness

There are many intuitions that are offered by the neocybernetic approach. For
example, one can claim that ezpertise in a specific domain is based on appropri-
ate features or chunks existing in the conceptual space. An expert matches the
observations against his mental view, thus compressing the data into domain-
oriented representations. Applying this low-dimensional representation, miss-
ing variables are “filled in” as the known variables are matched against the
model, and this way, “associative inference” is implemented (see Fig. 7.5). One
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Figure 7.5: Traditional view of expertise (on the top left) makes it possi-
ble to implement rules of the form IF x = x; THEN z = z;, etc., whereas
when distributions are employed, inference becomes subtler, being an
associative (maximum likelihood) pattern matching process against the
existing knowledge model

of the traditional challenges in artificial intelligence — the “frame problem”,
not understanding the context — vanishes because of high dimension of data:
Even the less important information is carried along in the data structures,
the high-dimensional knowledge representations being never isolated from their
surroundings. The distribution-oriented view of expertise with continuous fine
structure allows subtle, non-binary reasoning, and also merciful degradation of
mental capacity as a function of scarcity of resources is manifested.

According to the domain-area experts, or members of Mensa (!), intelligence
is the ability of recognizing similarities between patterns — this is what the
intelligence tests actually measure. And patterns can be seen as correlation
structures. Extracting and modeling of such correlation structures is very much
in line with what the cybernetic machinery does. Finding a connection between
far-apart correlating units can be said to be an idea (or innovation), and the
general ability of finding such new couplings can be called creativity. And when
exploiting the Eastern wisdom: In Buddhism, awakening is a comprehensive
experience, a moment of intuitive, associative understanding.

No explicit determination of the “mental view” is possible — this is due to the
limited bandwidth of input channels. Activation of appropriate concepts has
to be carried out through a sequential process, sequences activating marginal
distributions, gradually spanning “virtual data” in the environment?*. Similarly,
also the output channels are band-limited. Coordinated decoding of associative
representations is needed for all communication — not only among people, but
also among mental substructures, that is, when thinking takes place, when in-

41t seems that the transfer of complex information always has to be implemented in a
sequential form — for example, when looking at a scene, the saccadic eye movements change
the single image into a sequence of subimages that are thereafter reconstructed in the mind
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formation is transferred between subsystems that previously have perhaps not
been connected. Higher-level tasks, like planning or explicit inference are based
on coordinated processing of sequences. Consequently, it is not enough to ex-
plain the processes from declarative to associative, or coding of information —
also the inverse direction, or decoding associative representations to sequen-
tial ones, should somehow be explained by the mental model. This decoding
is not so natural process as the coding seems to be: For example a human
expert cannot typically explicate his/her knowledge. This would mean loss-
lessly projecting the very high-dimensional virtual distribution onto a set of
one-dimensional sequences, natural sentences or formal rules. Such “sequen-
tial codes”, or languages, will be elaborated on later; perhaps understanding
the relevance of languages when trying to understand “living” systems in other
domains, too, is the main message here.

There also exist more vague concepts, like that of consciousness, can be ad-
dressed in the neocybernetic framework. There are many contradicting intu-
itions of how consciousness should be defined — the heated controversies being,
of course, caused by the fact that consciousness is the essence of our specialty
among animals. The views vary from the highest (consciousness is the culmina-
tion of intelligence) to the lowest level (consciousness is ability to feel something
like pain), or even below that (consciousness can only be explained in terms of
quantum effects).

Awareness of self, or “knowing that one knows that one knows”, is assumedly a
holistic, emergent phenomenon that cannot be reduced. However, in the adopted
framework this structure of infinite recess can again be collapsed. In the neocy-
bernetic spirit, it can be assumed that the mental machinery constructs a more
or less sophisticated model of the environment; when this model becomes com-
plex enough, the “self” becomes a relevant entity in the model that successfully
helps in structuring the observations and behaviors in the environment. Indeed,
when there is a model of one’s own model, a system can be said to be conscious.
This would mean that animals have consciousness in varying degrees — but
also non-biological cybernetic systems would be conscious to some extent. On
the other hand, a small child not distinguishing itself from its mother is not yet
conscious — but the “brain prosthesis” can truly capture the mind.

The “cybernetic grounding”, or the concretization of the intuitions concerning
mental processes as being based on infinite recess, also solves many problems
about the hermeneutic circles. For example, the traditional definition of knowl-
edge is that knowledge is something like motivated, true belief. Defining one term
then means first defining three terms — these terms being, after all, dependent
of the concept of knowledge. In the neocybernetic framework the chains of asso-
ciations converge to a balance of referential tensions as they are implemented as
stable dynamic processes, the “fuzzy ostensions” being defined by the elements
in matrix A. The deepest concepts, too, become matters of scientific study as
instead of “truth” the essential thing is relevance: Do there exist appropriate
attractors in the ideasphere. Counterintuitively — making the truth relativistic
it becomes universal. Similarly, many other age-old philosophical dilemmas can
be given cybernetically concrete interpretations.
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7.1.5 Theories of mind

As an example of a wide variety of deep discussions concerning cognitive phe-
nomena that are related to cybernetic considerations, study the philosophy of
Immanuel Kant (1724-1804) here. Kant was the first to observe that even
though we have our subjective mental worlds, there is something objective:
Even though we experience the a priori existing noumena in different ways be-
cause we have different senses, we all share the same predetermined machinery
that processes the observations. Thus, there is possibility of objectivity among
people (see chapter 10). Without saying it in modern terms, Kant is actually
speaking of models and people sharing the same modeling principles, solving
(to some extent) the problem of what is the relation between the external world
and internal mind, and how an experience is possible in the first place. He
was the most significant cognitive theorist long before his ideas of were coined
in psychology — and he indeed was a pioneer of scientific study in this field,
criticizing the use of mere pure reason.

One of the basic principles about the human perception machinery is — accord-
ing to Kant — its capability of constructing causal structures among observa-
tions. The background here is, of course, the fact that our mental constructs
invariably seem to have such a functional structure between causes and effects.
This observation has successfully been exploited for modeling (for example, see
[62]). However, as observed already by David Hume, one cannot ever see causal-
ities in data, only correlations, that is, one cannot without external help detect
cause/effect relationships, only simultaneity of phenomena. This seems to be
an eternal dilemma when trying to explain the human brain: There has to exist
some guiding hand constructing the causalities appropriately, and an external
mind is needed?

It can be claimed that the neocybernetic model offers a solution to this causality
dilemma (compare to chapter 3). Because it is only one’s own actions Au, as
induced by the environment, that are being coded in Z, one implicitly knows
the structure among causes and effects — there is no paradox any more here.
True causality structures are indeed built deep in the Hebbian feedback adapta-
tion strategy: Only models are constructed that are tested in the environment
through feedback. The process of true “understanding” is a two-directional pro-
cess — to truly grasp something, you need to have your “hands on” it, seeing the
reaction of the world to your action, as observed also by today’s pedagogists®.
When looking at the cybernetic model (and now one needs to study the “stupid
agent”!), the matrix A is not actually any more a correlation matrix but a “cau-
sation matrix”; the machinery constructs a pancausal model out from noncausal
observations. The information flow from the environment to the system has al-
ways been seen as important, but now it is the inverse, or the feedback flow
that plays an equally important role: Otherwise there is no emergence of order,
and, specially, there will be no causal structures — and this “probing”, testing
for causality, is built deep in all levels of the structures in cybernetic systems.
Note that the causality as seen here is not “trivial” succession on the time axis;

5The Finnish words for “to understand” and that for “concept” (or “kasittad” and “késite”,
respectively) literally have their origin in the words “hand” and “to process by hand” (or “kasi”
and “kasitelld”). Surprisingly, it seems that different cultures have “grasped” or “handled”
such deep concepts in similar ways: In German, it is “begreifen”, etc.
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the variables Au and Z find their values simultaneously.

The central role of the self-centered causal models is reflected on the highest
levels of consciousness. The sense of free will is one’s interpretation of what is
happening to him/her in the turmoil of the world. Human’s mind is built in
such a way that when one’s intentions match with what truly takes place in the
world, one feels like being the subject rather than the object there.

Kant also discusses transcendental arguments concerning the world outside:
What kind of properties in the environment are necessary to make construction
of the mental model (as he sees it) possible. Even though such discussions are
very deep and somewhat obscure, there are simple ideas underneath that still
hold; these ideas are contrasted here to the structure of the cybernetic model and
the environment. Kant concludes that there are essentially two key properties
of the world that are needed:

e Space. The observations need to have spatial structure to become man-
ifested as something else than chaos. This ability to distinguish be-
tween variables is implemented through the basic structure of the cyber-
netic model: Tt is assumed that the variables are localized in the vectors,
and within the vectors each variable has a distinct role.

e Time. Human-like cognitive phenomena are fundamentally based on tem-
poral structures. In the cybernetic models, the time axes have mainly been
ignored this far, and in what follows, such extensions are implemented
through the properties of the environment.

The above starting points nicely draw the borderlines — what kind of mod-
els one reasonably can construct and what to ignore. Concerning the spatial
structure, there are the basic wiring between the senses and the brains, signals
determining the basic dimensions of the space that exists in the brain; beyond
that, the assumption of tabula rasa can be employed. There are no innate ideas
or predetermined faculties in the brain, and the universal modeling ideas should
be applicable. But Kant’s intuition is deep: Taking the spatial structure only
into account is not enough. When attacking the temporal structures, however,
the simplicity objective has to be relaxed. In what follows, the time-domain
complexities of the real world are hidden outside the system — it suffices to
study what it takes if the system is to optimally implement a cybernetic struc-
ture in such an environment.

7.2 Manipulating the environment

What is the reason for cognitive systems to emerge in the first place? Nature
has not built the mental machinery to think of philosophies.

There is a consistent continuum from basic neurons to the human brain —
from the simplest structure to the most complex ones, the objective is always
to change the environment. This far in the cybernetic studies the system has
adapted to match the properties of the environment, but now its role is changed
from a silent object into an active subject. Only reacting to the environment,
simply trying to survive is not yet what one would think life is; intuitively, there
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must be more passion and free will involved. To be capable of manipulating the
environment in more sophisticated ways, more complicated control structures
than what have been studied this far are needed. The following discussion is to
be seen only as a demonstration of challenges the cognitive system is facing.

7.2.1 About artificial intelligence

When trying to understand intelligence in wider perspectives, one is entering
the zone of (even more) speculative studies. Rather than doing analysis of the
environment one tries to make synthesis towards a somehow modified environ-
ment. When trying to understand intelligence in general, and when trying to
synthesize it, the lessons learned in the field of artificial intelligence are invalu-
able. Indeed, the goals of artificial intelligence are getting nearer to those of
cybernetics — sometimes the letters Al are interpreted as agent intelligence or
ambient intelligence.

AT research is a marvelous example of a cybernetic domain where memes com-
pete violently. Cognition, and specially intelligence, are sensitive areas — it is
something that is seen as something that is human’s own. There are many ar-
guments and counterarguments, the tensions evidently not finding a generally
agreed balance. For example, the extreme pessimists claim that human mind
cannot study its own functioning; on the other hand, the extreme optimists
claim that after twenty years computers are so fast that they beat the human.
Perhaps one should already be capable of outperforming a housefly, then? The
periods of enthusiasm and disappointments have alternated, and the whole field
has had its collapses and rebirths. It is good to recognize the memes from the
past.

There were many starting points for Al back in mid-1900 — one cornerstone was
Norbert Wiener with his Cybernetics, and another influential figure was Alan
Turing. Indeed, it was Turing that defined the AI paradigm and its objectives:
He coined the goal of AI research in his (modified) imitation experiment —
a computer is intelligent if it can mimic human [80]. But is it enough that
behavior only looks intelligent? This is still today the mainstream approach,
but the resulting applications are examples of the “shallow view” of AI, where
the intuitive feeling of intelligence seems to escape.

Another contribution of Turing (and other pioneers) was the introduction of
the computer metaphor in Al: After showing that the “Turing machine” can
implement any computable function, it was easy to assume that also mental
functions can be emulated by computer-like structures. Indeed, the standard
models for explaining cognition, like the Anderson’s ACTR, are still based on
memory registers and separate compartments for functionalities [1]. However,
the computer metaphor with centralized elements necessarily fails the reality
check; there is no explicit transfer of information and no separate localizable
memory structures in the brain, but it is all an integrated whole.

But, indeed, Alan Turing was the first to admit that there is more to a zebra
than the stripes.

The original approaches to Al seem to be having their reincarnation today: The
modern “Brooksian robotics”, for example, goes back to very basics of action
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and reaction structures [11]. In the same spirit, the successes of connection-
ism have also brought the emphasis from high-level symbolic — cognitivistic
— approaches back to low-level data processing with inner structures of no
representation. Turing’s “black box” approach to intelligence has its roots in
behaviorism; however, today cognitivism or constructionism are mainstream
cognitive science. Should not AT follow here — back towards symbols? Perhaps
a synthesis is possible, perhaps it is possible to make the developments a spiral
rather than a recurring cycle? The claim here is that the cybernetic framework
is the key towards this synthesis.

It seems that the original intuitions about intelligence due to Wiener are still
valid: The basic function of the mental machinery is to implement control of
environment. But rather than implementing behavioristic control, one can im-
plement more sophisticated model-based controls applying the neocybernetic
models with internal representations. When an integral connection with the
environment is implemented, “deep AI” can be reached. This connection is not
only embedded Al in the traditional sense, but “cybernetic AI”.

Implicit control is the basic property of a neocybernetic system. However, now
the control view needs to be extended from the side-effect towards the basic
functionality. It turns out that some qualitatively new structures need to be
introduced, and a certain level of sophistication is needed to support and adapt
those structures.

7.2.2 Reflexes and beyond

The assumption here is that when a system reacts appropriately to the environ-
ment, illusion of intelligence emerges. In its simplest form, such reactions can be
seen as reflexes, atomary manifestations of intelligence, representing reasonable
behavior — facilitating survival — with no brains truly involved. But there is
a continuum towards more convincing functionalities: For example, study the
behavior of a cat — when it sees something move in its field of vision, it turns
its head towards the movement and attacks. In lower animals, like in frogs, such
behaviors are still more prominent: Movements in its visual field activate the
reflexes. Automated sensor/motor loops can be seen as extensions of simple re-
flexes, being learned rather than hard-wired, but still by-passing higher mental
faculties. As seen from outside, such more or less automated reaction already
gives an impression of “real-life intelligence”. And this intelligence is reached
by a simple cybernetic feedback structure as shown here.

Here, artificial reflexes, learned but sub-conscious, are studied, and for that
purpose, the originally static model framework is extended to dynamic cases.

Earlier the cybernetic system was seen as a mirror of the environment, environ-
ment being mapped onto the system state and from there instantaneously back
to the environment, the time axis being compressed into a singularity. Now it
is the controller system that implements current state as a mirror between the
past and the future, and, what is more, an adapted control also should somehow
implement balance between the past and the future. The cybernetic key princi-
ples are still applicable: The goal of the system is to eliminate variation in the
environment. When variations in the environment are interpreted as threats,
low-level intelligence already has immediate application: Getting away from
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threats can be seen as control towards zero activation in the local environment.
Based on such environmental challenges, emergence of higher and higher levels
of mental functions and reasoning skills is evolutionarily comprehensible: Facing
a combination of stimuli, should one fight or escape?

The subjective variables are bound to the system controlling the environment
— this means that the same goal, or changing of the observed environment, can
be reached in different ways: Either by explicitly altering the environment and
its variables, or through reaching another viewpoint, meaning that the system
moves with respect to the fixed environment. The same solutions apply in both
cases and the actual mechanisms of how the variables change need not be known
by the local controller.

Estimate the future, and when this future is known — eliminate it, bringing the
future to zero state. As compared to traditional control engineering disciplines,
this resembles the dead-beat strategy. This kind of control has its weaknesses,
including stability and robustness problems in challenging environments, and
more complicated control schemes could be studied here, too — however, the
dead-beat scheme is taken as the starting point. Still, there exist many ways
to implement the cybernetic control depending of the special properties of the
environment to be controlled; some alternatives are studied in what follows.

First, take a very simple case that is a direct extension of the original idea of
“static control”: Assume that if no action is taken, there is no change in the
state of the world, so that the future equals the past. This assumption is well
applicable in steady environments where change in the variables takes place
only through movements of the system. However, responses to one’s own ac-
tions need to be identified to implement smart controls. To make this simpler,
assume distinct, distinguishable excitations, and assume low level of coupling
(small ¢) so that complex dynamics in the environment can be ignored; further,
assume that all variables can be affected, that is, with strong enough control, all
variables can be zeroed — otherwise there can emerge stability problems in the
controller adaptation. To avoid incorrect adaptation, assume that the initial-
ization of ¢ is implemented appropriately. If all these assumptions are fulfilled,
only a minor extension to the cybernetic basic model needs to be introduced,
namely, delayed adaptation: When the control signal ¢(k) is there, the matrix
¢T = qE{6Z(k+1)E" (k)} is updated only after the results of the applied control
are visible (see Fig. 7.6). Time indices are used here to synchronize the data,
denoting the latest piece of information being employed; the “double bars” are
used here because the observations z are the inputs into the controller layer;
these “single bar” signals are to further find their balance against the new layer
latent variables, or control signals ¢. The model can only be updated afterwards
— but it can be applied online because it is the current information only that is
employed in control; in addition, the inversion of the control signal because the
negativity of the feedback has to be explicitly done, so that the actual control
is —¢.z(k).

The right-hand side in the figure represents the process of model construction,
where the dependencies between the control signal and the resulting observa-
tions are recorded, and the left-hand side represents model usage, or on-line
construction of the control signals. The information flows from the “prior in-
put” Z(k) to the “latent variable” ¢(k), and from there back to the “posterior
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input” z(k+ 1), now assuming that the control signal and the two inputs are in
balance — the former balance being implemented by the model machinery, but
the latter balance being hopefully provided by the environment. In a stationary
environment perceptions in the future are assumed statistically equivalent the
perceptions in the past.

The intuitive idea of this control is to make the change in the state inverse
of the current state, meaning that, when the new state is reconstructed as a
sum of the old state and the change, the outcome will be zero state — meaning
successful control. The past and the future perceptions are “folded” on top of
each other. The procedure can be summarized as follows:

1. Observe the environment u(k) and find the compressed perception Z(k)
corresponding to (k).

2. Using the perception Z(k) as input, find the balance é(k) = ¢.z(k), and
apply the control —¢(k).

3. Update the model by the cross-correlation between ¢(k) and Z(k + 1), let
k — k41, and go back to step 1.

In principle, the above scheme defines a framework for mastering independent,
co-adapting motor neurons, so that many uncoordinated muscles can do individ-
ual “agent control”: The coordination emerges as the reactions in the environ-
ment are observed. Because of the “humble” nature of adaptations, redundant
control structures can be implemented, so that the dimension of ¢ is higher than
that of x.

As compared to the standard neocybernetics discussions, some new thinking is
needed here: The ultimate homogeneity cannot any more be reached. Struc-
turally, it is necessary to integrate also output (or control) in the models, mere
input data processing is no more enough. Above, it turns out that this can be
reached easily: An appropriately constructed model for input simultaneously
implements an optimized model for output (control signal) construction. Ap-
plying this trick, simple structures only are needed as explicit model simulations
can be avoided.

Technically, there are extra structures needed to capture the time-domain struc-
ture between data. When it is no more one static pattern at a time but a
discrete-time succession of samples, some sampling mechanism is needed. And
further: Many of the above shortcomings that plagued the presented scheme
can be fixed when even more sophisticated structures are employed. Specially,
above the details of dynamics were ignored; to proceed, a simple model of the
environment is no more enough — a wider view of the world needs to be sup-
plied to the controller. One has to be capable of simulation, or estimation of
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the future in a changing environment, before being capable of eliminating the
expected future deviations. The key point here is that there is a continuum
from simple to complex behaviors, all new innovations making the control sys-
tem in some respect better, thus defining a more or less smooth evolutionary
path towards extensions.

7.2.3 Extending the mind’s eye

In the earlier chapters it has turned out to that a good strategy to inspire new
functionalities in the model structures is to take into account the nonidealities
there necessarily are. In the similar manner, when studying the extensions that
are needed when aiming towards extensions to the cybernetic controls, nonideal-
ity of the world being controlled have to be considered. These nonidealities are
related to the time-domain structure of real-life phenomena: There is dynam-
ics, being manifested as inertia, and explicit delays being manifested as latent
times between the action and the corresponding reaction. The constraints of
the real world become acute and no easy tricks are available: The past cannot
be affected any more, and the future is not available yet. To manipulate the
world in reasonable ways, to change from an object to a subject, the system has
to be prepared to tackle with such properties of the surrounding world.

What is more, the world is characterized by a diversity of variables. There is a
multitude of alternatives when analyzing the dependencies among observation
entities: Certain variables can have causal structure, or they can be independent
of each other. Even if there is correlation among variables, there is no certainty
about their mutual causalities — but when implementing control, it is strict
causalities only that can be utilized. When deriving the cybernetic models
(chapter 3) all variables were assumed to be equally manipulable — indeed, this
is what the assumption of “pancausality” is about; this assumption was applied
also when implementing the control strategy in the above section. In the real
wide world outside the restricted domains, the idealizations do no more apply.
The adopted learning principle — increasing the connection strength if there is
correlation between the input and the internal state — results in ever-increasing
signals, ending in explosion, if the feedbacks from the state cannot bring the
input signal down. Of course, these difficulties only become more severe when
the dynamic nature of the environment is taken into account: The information
about the control effects comes only after a delay, and mere “frustration” of the
controller can also result in instability. There are no external critics to moderate
the adaptation processes, just as there is no a priori knowledge about the causal
structure available.

The complex causal structures are the main theoretical problem when striving
towards more active controls. Not all dependencies contributing in the outside
world can be detected. — But, indeed, the complete structure of causalities is
not needed. Note that the observed correlations can be utilized for prediction
even though the underlying mechanisms are hidden. There are different routes
to the same end result, and it suffices to identify the mechanisms of one’s own
actions to the future. This way, first mapping the observed current state to
the future (applying observed correlations), and from there back to one’s con-
trol actions (inverting the observed causalities), the general “model predictive
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control” can be implemented, when seen in the control engineering perspective.
To implement such a scheme, explicit prediction or anticipation of the future is
necessary.

How to represent the past and the future? It turns out that both the past
and the future, even though containing infinite amounts of information, can
be collapsed into a singularity, and thus can be coded efficiently: According
to system theory, an appropriately selected state vector can code the past of a
finite-dimensional dynamic system; and if it is assumed that the controls are
successful, there is only a short sequence of transients in the future before they
are eliminated.

To tackle with the time-domain peculiarities of the world, and, specially, to
implement the necessary structures to support prediction of the future, one
can employ the concept of a mental image. In Fig. 7.7, a simple possibility is
presented that can capture the state of the world containing linear dynamics of
(at most) order d — 1. The time series of relevant variables up to current time
are assumed to be stored as a high-dimensional vector structure (vector length
here m = Nd). The sampling interval is assumed to be selected appropriately
to capture the natural dynamics. When PCA-like data compression is carried
out, the degrees of freedom can be captured — in this case this means that the
dynamics of the signals can be losslessly coded. The time series representation
makes it possible to express discrete derivatives, so that there is no need to
include the derivatives separately among the data (see Section 7.1.2). The
control can be based on such mental images: In prediction, the current image
u(k) is mapped onto the future image u(k + d).

The representation of the world becomes high-dimensional, and the control
strategies need to be robust against redundancy and irrelevant information. But
if such robustness can be reached, natural-looking functionalities can be recon-
structed: for example, finding correlation patterns among seemingly unrelated
observations makes it possible to simulate conditioned reflexes.

Getting back from the assumption of extreme homogeneity to tailored struc-
tures means that also the assumptions concerning separate structures for sen-
sory memory, different kinds of registers and buffers, etc., become necessary
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again. The simplicity objective applied in modeling must not override the facts.
And, indeed, it has been observed that there are various specialized functional
structures in the brain. Processing of dynamic phenomena seems to be a central
part of brain functions: For example, the cerebellum is known to be related to
processing of low-level dynamics. Model-based simulation, or reconstruction of
the future, truly seems to be characteristic to brains (compare to “mirror neu-
rons”, etc.). And the modern brain imaging techniques have revealed that when
perceiving dynamic phenomena, there exist brain waves at certain frequencies;
it is tempting to assume that such cyclic operation is related to the mind’s in-
ternal discretization machinery that changes the continuous flow of sensations
into a discrete-time sequence of perceptions.

7.2.4 Implementing more sophisticated controls

When studying the possible control-motivated extensions to the basic neocy-
bernetic model, it seems that there exist many alternatives. At least in simple
environments, various structures can implement the necessary functionalities;
and there exists a huge body of control engineering understanding readily avail-
able to boost the intuitions (for discrete-time control of dynamic systems, see,
for example, [4]). Here, the above ideas are extended to tackle with the observed
challenges.

Again, the idea following the cybernetic principles is to bring the world state
back to intended balance state, or to the origin of the subjective variable system.
An enhanced control structure is presented in Fig. 7.8. Still, this scheme is
not quite universal: For example, here it is necessary that all goal points are
balance points, so that zero error means zero control. There are three parts in
this structure — modeling of change, prediction, and control construction —
and some key points are briefly explained below.

First, it is change in the environment that is being modeled — what remains
always constant is not interesting from the point of view of information acqui-
sition or from the point of view of control: Variables that do not affect or that
cannot be affected should be ignored. What is more, this change is defined as
the difference between the actual state of the environment and the state that
was predicted; this makes it possible to concentrate on phenomena that are truly
new and contain the most of fresh information. When modeling the difference
between the observed and the estimated state, one needs an additional signal
coming “from the past”: The input/output structure becomes “two-directional”,
input coming essentially from two sources (compare to Fig. 3.7). The past in-
formation is unalterable, thus not introducing additional dynamics in the model
structure.

The middle part in the figure represents the key functionality, or the predic-
tion of the future state based on the current state. The prediction is simple
least-squares mapping between the former and the latter mental images —
adaptation of this mapping model can only be carried out afterwards, when
the future is visible, but the model can be used without such delay. To imple-
ment the least-squares mapping with minimum number of auxiliary structures,
it is assumed that internal feedbacks in the neurons keep their activities at a
certain level. When the coupling coeflicients g; are individually controlled to
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make variance of Z(k) have value 1, then, according to the discussions in chapter
3, the whole covariance matrix E{Z(k)Z(k)?} becomes an identity matrix, and
the least-squares mapping from the previous to the next state becomes simply
2(k + d) =~ E{x(k + d)Z(k)T}2(k). As all variations E{:ch} are equal, it turns
out that triangularization of the covariance is necessary to distinguish between
the variables. Again, modifications of the cybernetic adaptation strategy are
needed: It is not the input and output that are used for updates, but this time
it is the input and the earlier input.

Finally, the construction of control itself follows the same lines of thought as
in the above simple control scheme in Sec. 7.2.2. Before further adaptation,
appropriate initialization of the data structures is first needed: This means, for
example, explicit stabilization of unstable systems. The control also needs to
be bootstrapped: An external controller is needed in the beginning to instan-
tiate the control model, and during adaptation, the cybernetic controller only
gradually takes over.

The presented control scheme is versatile, at least in principle: If nonlinearity
(the “cut” function) is included in the perception structures, one has sparse-
coded feature-based control. The key point is that even the most complicated
control tasks (like biped walking) can be implemented applying the piecewise
linear structures that are based on local principal component models (see [34]).

The above discussions concerning cybernetic control are by no means exhaustive.
The key point to observe here is that when trying to exploit the inherent time-
domain structures of the world, extensions to the basic neocybernetic model
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structure are necessary. The above structures cannot be generalized to other
domains — is there something universal that can be said about the world-
induced cybernetic structures?

7.3 Planning and beyond

The above discussion concerning the cognitive system is by no means applicable
to other cybernetic systems as such. In cognitive systems where the function-
alities are based on neuronal connections one can easily design additional con-
structs that implement explicit prediction and other functionalities. In other
domains there typically is less freedom, the functionalities being dictated by the
physical laws of the environment. Whereas the cognitive system has evolved for
planning, or for simulation of potential worlds and for consciously changing the
environment to fit one’s targets, in other domains there exist no such explicit
goal-directedness. Or is there? It seems that it is difficult to reach some general
model that would cover all cybernetic systems; some ideas are universal, though
— and somehow addressing the intentional changes in the environment is one
of such principles. Again, when looking at the very functional approaches that
natural systems have found to tackle with such challenges, it is evident that
there are lessons to be learned.

7.3.1 From reactivity to proactivity

When the cognitive system was taken as an example of cybernetic systems,
some general aspects of the cybernetic models — like the possibilities and inter-
pretations of sparse coded subspaces — could be made better comprehensible.
But, after all, perhaps that example best illustrated how different the systems
in different phenospheres can be. Whereas intelligence can be defined as the
capability of tackling with and managing in new, unknown environments, life
can be characterized as the capability of tackling with and managing in familiar,
known environments. Intelligence is manifested in creativity, but life is man-
ifested in routine. For some systems the changes in the environment repeat,
and the future is known for a long time ahead. Mastering this routine, acting
reasonably when one knows what there is to expect — this is the key challenge
here from now on.

The case of cognitive systems illustrated the need to tackle with not only the
current environment but also with the future environment. This is a new and
crucial point: This far feedback control has been emphasized — it is what the cy-
bernetic agents implement when they adapt to their environment, either explic-
itly (as in “intelligent agents”) or implicitly (as in “selfish agents”). Feedback
is a robust way to tackle with unknown environments, as the balance is effi-
ciently restored after the disturbances are detected. But such feedback control
is always reactive: You will do nothing before things go wrong. Prediction of
the future disturbances would make it possible to implement proactive control,
where disturbances are compensated before they ruin the system. When the
sources of disturbances are known, one can implement — applying engineering
terminology — feedforward control.
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Feedback is the only reasonable control scheme when there is noise in the envi-
ronment — or actions of other unknown systems. But when the environment
is already well in control so that its degrees of freedom can freely be manipu-
lated by the system (or set of systems), and when all degrees of freedom are
under control, the problem setting is very different. The systems can take an
active role. To begin with, the environment changes, and after that, the system
changes; but when the systems are “mature” and dominant in their environ-
ment, it can be so that as the systems change, the environment follows. When
the environment is thus under control, there is no limit: The histories of cumu-
lating manipulations can become longer and longer. The environment can be
tailored at will by the systems — but where should it be driven to? This is not
important, the key point is that all subsystems agree upon the direction so that
the balance can be maintained. As Lewis Carroll puts it:

“Cheshire-Puss, would you tell me please,
which way I ought to go from here?”
“That depends a good deal on where you want to get to,” said the Cat.
“I don’t much care where,” said Alice.
“Then it doesn’t matter which way you go,” said the Cat.

When the population is a model of the complex nonlinear world, it is the in-
dividual submodels that have to map the whole Wonderland. Only through
such ant-like search in that world the ranges are found, the possibilities becom-
ing investigated, so that the emergent-level model of local landscapes can be
compiled (even though this knowledge will ever remain distributed). In retro-
spect, different route selections can be evaluated against each other, and then
it is the Darwinian mechanism that can efficiently optimize among possibilities.
When the world has been mapped, it is reasonable to follow the right path.
The cognitive models can be assumed to construct their model of the future
by trial and error; in other phenospheres, however, one possibly cannot afford
mistakes, getting lost in the forest. Especially if the route is long, there is no
time to waste. The cognitive system has its limitations — remember that even
learning the muscular sequence of the golf swing takes a lifetime. In practice, to
find the desired place again, to take only the right turns, one necessarily needs
instructions. To implement such route maps, nature has been very innovative.

All complex population systems seem to be based on different kinds of instruc-
tions, and there are different kinds of implementations in different phenospheres.
In biological systems these instructions are coded in the genome, being innate,
and the flow of information is one-directional, so that the phenotypes cannot be
reduced back to the underlying genotype. On the other hand, memetic systems
are based on the cognitive “tabula rasa”, the instructions getting acquired from
canonical scriptures, and the flow of information is partly two-directional as it
is the clever minds that produce the scriptures (even though this explication of
expertise is typically difficult). The achievements in the cultural arena would
not be possible if they were based merely on the generic adaptation capability
of the cognitive medium — not everything can be learned the hard way. The
fast advances in cultural evolution are only possible because the production of
culture is cumulative, and the evolutionary developments there — creation of
new cultural achievements — can directly be based on the prior ones.

Note that it is still the same optimality criterion as before that is assumed
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to guide evolution — the match with environment, or ability to exploit envi-
ronmental resources determines fitness. Among the structures, however, there
are no visible “gradients”, there is no visible direction to go, and enhancement
can be observed only in retrospect. Thus, evolution of structures is not abso-
lute in the sense that goodness can be compared only as related to alternative
structures that have been experimented with; there is only “partial ordering”
of locations on the map.

As was learned from the case of cognitive systems, trying to reach out from the
current time towards the future necessarily requires structural developments in
the system; the more ambitious one is, the more sophisticated structures are
needed. Also the steps along the longer paths towards the desired locations
in the future are structural changes. The steps of structure change are com-
bined with parameter tuning in between; between the structural changes the
balance is restored around the new structure — this way, not all details need
to be codified in the instructions. Such succession of qualitative changes grad-
ually modifying the system outlook are characteristic especially to evolutionary
processes. Before, it was observed that catastrophes are the key to structural
changes, the whole old structure being reset; however, explicit instructions are
a way to avoid catastrophes, new structures being build upon the existing ones.
Individual systems are not to question the instructions — it is the interplay
between the systems and the overall environment that is the most important
thing, the subsystems just supporting the emergence of something “better”.
That is why, in some cases the death of the system is also predestinated in the
instructions; this kind of apoptosis can take place when the system has done its
share in changing the environment.

How is it possible that there is such wisdom built in the very mundane systems?
An example is needed here, and, as it turns out, the case of biological systems is
very illuminating: Following the above lines of thinking, the levels of individuals,
populations, and whole ecosystems become the same, being based on individuals
following the same instructions — just interpreting the instructions in different
ways.

7.3.2 Ontogeny of systems

The process of finding balance in a system, as discussed before in linear terms,
can in more complex systems be highly nonlinear, becoming a full-grown organ-
ism consisting of structural changes.

Development of a complex system is a step-by-step process. The system has
to be bootstrapped: The lower-level subsystems first need to be instantiated,
all attractors activated within a functioning environment — indeed, they have
to be brought to life — before the higher-level systems can survive in that
environment. A complex system cannot be instantiated as a one-step process
— or, at least, nature has not found the way to do it. This means that a new
individual has to repeat the same steps as its ancestors to become living. Yes,
all steps from the beginning of life, starting from the simplest chemicals and
catalysts, in principle have to be repeated.

There cannot exist structures of pure information; they must reincarnate in
some physical form. And any physical system is vulnerable to decay and wear
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— they must be regenerated periodically. This two-way nature of all systems
gives rise to deaths and births of individuals, or “system carriers”.

According to the assumption of Ernst Haeckel (1834-1919) the development of
an individual embryo repeats the development of the whole species, or, as he
expressed it, “ontogeny recapitulates phylogeny” (see Fig. 7.9). Even though his
idea has been heavily criticized, how else could it be? After all, as we now know,
it is mostly the same genes that are shared by very different species. The same
basic genes are shared by all of the biological living systems, even though these
genes may be interpreted in different ways, and they can become activated at
different stages of development. More complex life forms (that have assumedly
emerged later) have newer genes of their own, but they still consist of the same
underlying simpler functionalities, the whole path from the beginning to the
end being covered in the “building instructions”. The more there is common
in the two genomes, the longer history the species assumedly share. Of course,
Haeckel’s idea is a simplification — essentially the same truths can be expressed,
for example, in the form of von Baers Law: “Features common to all members
of a major taxon of animals develop earlier in ontogeny than do features that
distinguish subdivisions of the group”.

The system has to be instantiated in a single individual to become alive; for
biological systems, this means individual animals, and for memetic systems, this
means individual human minds. There is always a physical rack that is needed,
and the system size cannot grow beyond the capacities of that medium. One
concrete constraint is the life span: Because of the inertias in the environments,
it takes time before the balance is reached after each structure change. For
a system to evolve further, there must be enough time for the system to be
“downloaded” — and this is only the basis where the new developments are to
be built on. When the species history gets longer and more sophisticated, the
instructions need to become more efficient; and it is not only the history of the
one species but it is the history life on earth. It seems that the “higher” animals
having longer history to repeat, have managed to streamline the development
processes — in addition to typically having longer life times and duration of
gravity in general. How can this be explained?

Sometimes processes become streamlined as shortcut paths are found between
the original routes, the development becoming more straightforward. However,
more typically, it seems that, at least to some extent, acceleration of code read-
ing is built in the biological medium itself, and no structural changes are needed
to boost the processes: Along time, balance periods between structural changes
seem to become shorter and shorter. Where does the acceleration of processes
come from? Remember that the steps in development are based on new genes
becoming expressed, and these genes are there available, just waiting to be-
come activated. This activation takes place whenever the level of appropriate
excitatory factors has reached the threshold level; to make structural develop-
ments follow each other at a faster pace, it is only the question of making the
underlying quantitative processes more prominent — typically this happens as
the quantitative cybernetic matching processes are polished. Whereas the genes
themselves are evolutionarily old and they are mostly shared by different species,
it is the genetic control structures that have evolved later, making it possible to
easily alter the details of gene expression. From the succession of waterfalls and
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Figure 7.9: Graphs that are today usually called “Haeckel’s lie”. Ernst
Haeckel claimed that the embryos of fish, chicken, human, etc., are evolv-
ing through the essentially same phases, repeating the common history
of species development

quiet waters, structural changes and balance periods, the development processes
seem to evolve towards torrents, continuous fast-flowing rapids.

The instructions need not be implemented strictly sequentially — as long as
hierarchy among subsystems is maintained, the higher-level constructs being
based on the lower-level ones. For example, in the developing embryo, the
subprocesses are parallel and somewhat independent. The changes in expression
rates of the corresponding genes can also develop at different rates. Indeed, such
differences in gene expression properties are known in developmental biology
as heterocrony. As the genetic controls become more efficient, control signals
becoming stronger and more consistent, the genes are activated earlier; the faster
some control starts the more prominent that structure typically is in the adult.
Especially in vertebrates the basic structures are the same, differences in the
outcome being to a large extent based on at what time during the development
the genes started becoming expressed.

There are basically two main classes of systems: The biological ones in the chem-
ical domain being based on genes are “natural systems”, whereas the memetic
ones in the cognitive domain being based on memes can be called “man-made
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systems”. There is very much in common among them what comes to the role
of the “instructions”. Just as genes are shared among species, memes are shared
among cultural works, a new combination of memes being a structurally new
“species”, mental or physical artifact, to build further culture on. The “memetic
phylogeny”, or cultural evolution, is fast because it is free of the physical con-
straints of the interpretation machinery: The mental machinery is a universal
medium for all kinds of memes, structural changes being implemented in “soft-
ware”. What comes to “memetic ontogeny”, also the memetic systems need
to be instantiated, starting from zero, in each mind separately. Again, the
developmental subprocesses can be, if not parallel, still uncoordinated: When
reconstructing a memetic system it does not matter in which order you read
the books as long as you understand the used concepts. Similarly as the genetic
systems, also memetic ones (like scientific theories) are streamlined as they are
matured; to fit in a single mind, they need to be optimized to become extended.
This streamlining does not apply only to the meme combinations themselves,
but also to the medium: the mental machinery develops from the simple ways
of thinking towards more mature ones. Indeed, the reasoning processes can also
been seen as an evolutionary ones, starting from simpler mental structures and
ending in more appropriate ones. In the beginning finding connections between
mental variables is more or less random, new structural changes being called
ideas or innovations, bursting out from prior balances to new conclusions of re-
leased tensions; but after rehearsal, such inference processes become more fluent
and automated.

When modeling the most interesting cybernetic systems, it seems that mastering
the evolutionary processes would be of paramount importance. To understand
such phenomena one needs tailored frameworks to model sequential processes.
It turns out that one needs domain-specific languages and grammars.

7.3.3 Representations of evolution

To understand living systems, evolutionary phenomena are perhaps the biggest
challenge. All systems where there is evolution are basically based on sequential
representations by nature. The reason for this seems to be that a sequential suc-
cession of instructions is nature’s way of passing information over gaps between
systems. Linear codes can be easily read and reproduced — copied, stored, and
transmitted. Even though being sequential, implementation of such code cannot
usually be characterized as being process-like: The interpretation of the code is
detached from the time variable, instructions being read and substructures being
defined in a somewhat sporadic manner. There do not exist strong mathemati-
cal tools to master such mappings between topologically so different structures.
Still, conceptual tools for formalizing evolutionary non-continuous processes are
needed: One needs compact model structures to capture the functioning of the
codes. It is different kinds of formalisms and languages with special grammars
and vocabularies that can be applied for capturing such codes. What do we
know about such representations?

In the memetic domain, there exist ample evidence and experiences about the
properties of codes and their interpretation. Contribution of AI or cognitive
science in this context is that the memetic representations are studied a lot
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there, the connections between natural languages and the corresponding mental
constructs being a central topic there. Perhaps some questions that have not
even been formulated yet concerning evolutionary systems have already been
answered?

The objective of all natural language use is to instantiate more or less indepen-
dent subsystems in minds. How well that code matches the existing environ-
ment, how relevant it is, dictates how “living” that subsystem becomes, being
perhaps later exploited for a larger-scale memetic system. A code-form repre-
sentation should correspond to a high-dimensional associative representation,
so that the knowledge can thus be stored outside the living system, making it
possible be put alive in another mind later. The coding is not unique, and there
are different kinds of codes, as the dynamics of the attractors can be waken
up in different ways. In its most compact and explicit form, the bare bones of
expertise can be represented as declarative rules that are explicit partial pro-
jections of the high-dimensional representation onto low dimension. There is
plenty of material on the challenges of doing the inverse, when going back from
the declarative to the associative, or from “novice” representations to expert
representations. These age-old Al problems become a more general problem
plaguing all cybernetic systems: The essence of a complex system is difficult to
represent in code, and it is difficult to implement that code as a system. But if
it is the nature’s way of representing the system outside the system itself, the
way to survive over the succession of deaths and births, it should assumedly be
pursued also by humans trying to do the same.

As there is intuitively such a close connection between the codes in memetic
and the genetic systems, one is tempted to speculate. Expertise is difficult to
explicate, but it still can be written in books, no matter how fragmented that
representation necessarily becomes — is it really so that nature has not found
any way to reach such bi-directionality in the genetic system? The dynamic
balances can be constructed using the genetic code, but it seems evident that
the code cannot be modified by the system state. However, when comparing
to the use of language, it is the available memetic codes that are recombined;
language structurs need not be recreated, they are just activated appropriately.
Similarly, perhaps the genetic code can be seen as a set of rather constant build-
ing blocks, gene atoms, and the main emphasis is on the instructions telling how
to combine them. Just as texts can be constructed on the fly by combining the
available memes in more or less fresh ways, gene functions can be combined
in an equally flexible fashion. The epigenetic cellular state, or the vector of
transcription factor activities, reveals how the control genes are reprogrammed.
This system state can then be inherited in a Lamarckian fashion without affect-
ing the underlying genetic codes. Perhaps the increased flexibility explains why
the control genes seem to be so influential in higher life forms?

The mappings between the code and the functioning system are not one-to-one,
not unique in either direction. It is clear that in the high-dimensional dynamic
system of continuous-valued variables there is more information than can ever
be stacked into a finite code consisting of distinct variables. But also in the
opposite direction, when putting the code alive, misinterpretations are possible
because the systems are instantiated in different environments — and it is, after
all, the personal environment that determines the relevant attractors.
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Figure 7.10: From sequential to parallel — each representation being

meaningful and interpretable only in an appropriate environment

In Fig. 7.10, the relationships between the description of a system and its im-
plementation is illustrated. The description determines the structure, and the
system itself matches the structure against the environment by fitting its pa-
rameters — and simultaneously changing the environment. The system is the
mirror of the environment only within the determined structural framework. It
is the environment everywhere coupling things together, supplying for the inter-
pretations: The environment is the key to assessing the relevance of a system as
it is finally the match against the environment that determines the validity of a
system and its internal tensions. Also the language of the codes, grammar and
vocabulary, is determined by the environment, because it is the environment
that has to interpret the code.

The role of the environment cannot be overemphasized, as it is the final judge
supplying for the domain-area semantics. Only if the structures are interpreted
in the right environment they can become living attractors; without interpreta-
tion all structures and signs are void. In this sense, one could speak of “natural
semiotics”. For example, the ancient texts are not only undecipherable sets of
tokens, but they carry semantics even after the original culture is dead — as-
suming that the memetic attractors still exist in our culture, and the cultural
context can be reconstructed.

The environment having such a dominant role, it is questionable whether there
can exist any general theory of evolutionary systems. It seems that evolutionary
processes cannot be abstracted away from the details of the properties of the
underlying medium. A code is only meaningful if the environment — or the
interpreter of the code — is also exactly defined. Interesting analysis is still
possible — in the following chapter, ideas concerning such codes carrying the
domain-oriented interpretations are studied in terms of an example case. There
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are so many efforts on trying to understand the memetic code, the natural
language, so that, for a change, study the genetic code and the special challenges
of the chemical domain. How does the “proteomic code”, the sequence of amino
acids, dictate the protein structure?
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