
AS-74.4192  Elementary Cybernetics 
 

Lecture 3: 

Towards Modeling 
of Emergence 



Where to go? 

 First: mindstorming, 
apply the intuitions! 

 Then: select the 
directions where one 
can proceed 
 

 Vision + mission: 

 Holistic problems, 
but reductionistic 
methods 

 First: 

 “Model of modeling” 



Typical evolution of models: “Bottom up” 

 Models tend to become more and more sophisticated 

 For example, in bioprocess modeling, using the basic bricks 

   Exponential           Logistic          Monod model 

 
 

 one can construct: 
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 Fiddler’s 
paradise! 

 

 Models 
unanalyzable & 
hardly useful 



Example: Model of Grass vs. Rabbits 

 First try 

 - Needs fixing: unlimited growth 
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 Still needs fixing ... 

 - Negative biomass! 

 Monod 
model 
added 
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 ... and still ... 

  Limited 
decrease 



... An endless task! 
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Similarly in all complex environments ... 

 Combine basic blocks (integrators, etc.) in 
an intuitively appropriate way 

 Example: System dynamics 

 World models, etc. (Forrester) 

 

 
 However: 

 Simulation exactly 
reveals what was 
explicitly modeled! 
 

 Are there other 
alternatives for finding 
models? 

 Qualitative 
behaviors 
depend on 
parameters! 



Are there alternative approaches? 

Traditional modeling 

Intended model evolution 

Order           Chaos 



“Top down”: Power of systemic thinking 

 Assume that the door of a 
refrigerator (1 kW,  = 30%)  
is left open. How will the 
room temperature behave? 
 

1. It will decrease. 

2. It will increase. 
 

 – But what is the power? 

 Appropriately defining the 
system boundaries makes 
this simple!  



“Granularization” 

 Fewer number of variables selected 
to represent a phenomenon 

 Generalize & abstract away!  

fine-grained coarse-grained 



Warning 

 Ideal of holism: The whole is larger than the sum of the parts 

 Risk of holism: The “hole” is larger than the sum of the parts: 

The temptation of loose hypothesizing has to be avoided, abstractions must not be too wild 



Key question – link among levels = emergence  

1. What do you think is an 
emergent phenomenon? 
 

2. How would you approach  
and model it? 



Complex systems: Science in the making 

 The field of complex systems research is far from mature 

 No paradigmatic guidelines yet exist: There are no generally 
approved approaches, common concepts, methodologies or 
tools, typical application domains or problem settings 
 

 Neocybernetics is an approach to capturing the essence of 
complexity in a simple framework 

 Now: The concepts and underlying assumptions are defined 

 Note: The developments were not originally so straightforward 
– only “highway through the jungle” is shown 

 Note: There always exist many ways where to proceed; here, 
alternative branches also need to be considered ... 



Opposite intuitions #1 

 Traditionally, in complex systems 
research emphasis is on surface 
patterns, visible formations 
 For example, Wolfram’s sea shells 

 Fractal intuitions, etc. 

 However, remember Alan Turing: 
“The zebra stripes are simple –      
I am more concerned of the horse 
behind” 
 

 Now: key point in complex systems 
is not the surface patterns but deep 
structures 

from S. Johnson: “Emergence” 

 Compare to shallow vs. 
deep views to AI 



 Assume: Deep structures = underlying emergent patterns 
meaning functionalities where the system is attracted to 
 

 How to model emergence (a holistic phenomenon) in a 
reductionistic way ...?!  

 Indeed, apply the very traditional modeling ideas: 
 

 First: Studying explicit examples, construct an intuitive understanding of what 
emergence is 

 After that: Find the common features and represent them in an explicit 
mathematical framework 
 

 Sounds like nonsense? However, this can be done.  
 

 ... There are many ways to interpret the evidence ... 

“Definition” of Emergence: “Phenomenon that cannot be defined”! 



Emergence?  – Seen it before! 

 Different kinds of 
model structures 
are appropriate 
on different  
levels 

Atom groups

Statistical mechanics
with velocity distributions

Elementary particles

Quantum mechanics
with uncertainties

Individual atoms

Ideal gas model 
with Newtonian mechanics

Macroscopic entities

Classical thermodynamics
with quantities like  and T p

Large volumes

Dynamic PDE models
with turbulence, etc. 

Perfect mixers

Ordinary diff. equations
with lumped parameters

DETERMINISM

STOCHASTICS

STOCHASTICS

STOCHASTICS

STOCHASTICS?

DETERMINISM

DETERMINISM
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 “Emergence” 
taking place 
between 
each layer! 



 Today, the level of deterministic first-principles models is  
already fully exploited 

 Now one should reach for the highest, stochastic level  

 (Note: Stochastic and deterministic levels alternating is no 
coincidence: Otherwise the levels could be “collapsed”) 
 

 Higher level: Time scales longer + number of functional entities 
lower (granularizing lots of faster parallel interactions)  

 Abstractions in emergent models: 
 Time axis has to be eliminated! 

 Individual realizations have to be ignored! 

 This must be done in an appropriate way, so that the properties 
relevant on the higher level are not compromized 

 “Weak emergence”: Higher-level variables = 
functions of statistical distribution properties 



Towards formalizing the intuitions 

 ... You have one grain of sand, then you have two, then three  
– at what point do you have a pile of sand? 
 

 Two concepts that are intuitively close to each other: emergence 
and infinity 
 

 Abstracting details away along the time axis or spatial axis: 

 

 
 

 Here, expectation “E” can be interpreted as “emergence” 

 Individual instances have no relevance whatsoever any more; 
time-domain behaviors become represented by end results 
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 See the forest for the trees! 



 Is emergence only averaging?! 

 Appropriate nonlinearity is here needed – then, effective 
theories can be found (standard view) 

 For example, gas temperature follows weak emergence: 

 
 

 What is needed for (more intuitively appealing) emergence is 
interaction of underlying components (new view!) 

 In its simplest form, such coupling can be modeled as 

 
 

 This all is captured in covariances (next time!) 

 2

kin ET E v

 E i jx x  Note that covariances can still be 
modeled in linear terms! 



 Traditional computability theory has only studied cases where 
algorithms stop – in the Greek spirit truly! 

 

 

 
 

 Such theory cannot study emergence because all computations 
with E are infinite (at least in principle) 

 In practice, relevant data typically behaves nicely, iterations 
converging towards final values also for finite sample sizes 

 Rather than studying formal algorithms or other structures, 
emphasis and starting point now is on data properties! 

NOT 



Opposite intuitions #2 

 Traditionally, one concentrates on individual actors and distinct 
time points 

 Now one abstracts from individuals to groups or populations, 
from distinct anomalies to averages or expectations 

 Consequences – some examples: 
 

 The “selfish gene” and game theoretic individualistic approaches cannot explain 
altruism, etc., that become reasonable only at the population level 

 “Survival of the fittest” is not the key point – matching the whole terrain, finding 
the outlook of “fitness landscape” is the goal of a population 

 Family of good solutions and modeling their spectrum – this is assumedly what 
nature also does: It does not know how to solve NP hard problems! 
 

 Disadvantage: The resulting models cannot then simulate 
individual actors or processes 



 Paradoxes are like “super colliders” of traditional thinking: 
problems and new horizons are momentarily exposed 

 

 
 

 For example, study the “prisoner’s dilemma”. 

There are two prisoners, A and B, who are 

accused of the same crime. If they co-operate 

and do not deceive each other, the penalty is 

not very bad … on the other hand, if either one 

deceives the other, he will walk free, while the 

other will have the maximum penalty – long 

sentences are given also if both deceive. 

 Traditional game theory says that one should 

always deceive. 

 Co-operation emerges as a winning strategy 

only in “iterated prisoner’s dilemma” case, 

where – again – the time axis is eliminated. 

 

 



Opposite intuitions #3 

 Phenomena can be represented in terms of processes or in 
terms of patterns (Herbert Simon 1969) 

 When describing complex systems, process view dominates: 
 Individual (inter)actions and explicit time structure is emphasized; no doubt 

because such causal structures are easier to grasp 

 For example, traditional cybernetic models are based on actual realizations of 
sequential, more or less one-at-a-time interactions 

 Thinking in terms of programs; for example, the agents today are software 
constructs 
 And all AI techniques are today seen in such agent perspective (for example, Russell, Norvig: 

“Artificial Intelligence: A Modern Approach” states that “... The unifying theme of the book is the 
concept of an intelligent agent. ...”) 
 

 Now: Patterns are determined using statistical properties 
Counterintuitively, one can address process philosophies 



... Process view (cont’d) 

 Why process view rules? 
Some intuitions: 
 

1. Because computer is used 
as a general modeling tool, 
algorithmic view dominates 

2. Specially, the chaos theory 
defines iteration as the 
route to complexity 

3. Also: There is more to the 
phenotype than there is 
information in the genotype 



Structural complexity

Dimensional complexity

Physical
model

Run-time
model

Data
model

Pattern
model

Vision now / Technical view 

simulation 

 NATURE 

observations           modeling  

 “Pattern model” is 
generic & general 

 Our objective here     
(as it turns out!) 

 essence captured 

 compression = essence crystallized 



 Traditionally, physical model tries to capture one system, one 
phenomenon in isolation 

 Purely syntactical fixed model structure as the starting point  
– a priori assumptions about the system are needed 

 “TRUTH” = system behavior with no disturbances 
 

 Now, pattern model integrates the system and its environment 

 System is in interaction with the surroundings; this reveals its 
role in the environment, giving a “semantical” representation 

 RELEVANCE = System with “disturbances”, typical auxiliary 
effects, resulting in the essence of the system 

Opposite intuitions #4 



 New levels in the emergence hierarchy (to be seen later) 

 Highest level consists of semantically meaningful patterns 

STOCHASTICS

DETERMINISM

DETERMINISM

Perfect mixers

Ordinary diff. equations
with lumped parameters

Multivariate models

nformation (variation)
Relevance in terms of
i

Functionalities

Behavioral qualifiers 
and qualities

 Kantian-style compromize: 

 Structure of the patterns theory driven 

 Contents of the patterns data defined! 



Importance of stationarity and stability 

 Many problems fade away when the actual dynamic processes 
are abstracted using statistical system properties (these 
problems are tackled with in control engineering) 

 When can such abstractions be carried out? 
 To have statistical measures emerge, the signals have to be stationary 

 To have stationary signals, underlying system has to be stable in the large 

 However, there are tensions in a system: The cybernetic balance 
is a dynamic equilibrium (in the large) 

 Heuristics: Stability constitutes a “cooker” of complexity  

 Truly, how could one assume stability in natural processes?  
– The other alternatives are explosion (resulting in exhaustion of 
resources) or extinction 



 Note that there is a big difference between momentary 
patterns and dynamic equilibria 
 

 Static form can be characterized as f(x) = 0; balance means  
zero gradient df(x)/dx = 0. In dynamic balance underlying flows 
compensate each other; thermodynamic balance (or death) 
means that all flows have ceased. 
 

 Even though the visible system may seem to consist of algebraic 
dependencies among variables, underneath there are (fast) 
dynamic processes 

 These are typically (generalized) diffusion processes 

 Otherwise, finding the balance cannot be explained in 
decentralized terms   



Opposite intuitions #5 

 The traditional intuition 
concerning complex systems 
says they are extremely 
unstable, always being at the 
“edge of chaos” 

 “Steady state means death”  
 

 Erwin Schrödinger: Life is as far as 
possible from balance 

 Ilya Prigogine: The essence of life is in 
dissipative processes 

 

 Now: The static and dynamic 
balances are different things! 

Uninteresting 

Uninteresting 



 Non-balance thinking, 
emphasizing change, is  
very Western style  

 Eastern wisdom takes 
harmony = balance as the 
underlying goal and ideal 
(philosophy, medicine, ...) 

 The essence is in more      
or less fixed patterns, or 
attractors of dynamics 

 Chinese symbol for air or 
vapor; also meaning the 
mystical ordering principle 



Cybernetic model – Intermediate summary 

 The role of balances is crucial when constructing neocybernetic 
models; indeed, the emergent patterns that are to be modeled 
are “structures of stability” (see later)  

 The neocybernetic model is a model of balances, or, if put in a 
more accurate way, it is a balanced model of balances  
(higher-order balance) taking into account also the nature of 
the environment (as determined by the statistical signal 
properties) 

 The neocybernetic model is a map of the relevant behaviors 
corresponding to the observed environment, determining the 
behavioral spectrum of the system (where behavior means 
reactions to environmental excitations) 



 In a nonlinear system, uniqueness of the balance cannot be 
assumed; indeed, the neocybernetic model covers the spectrum 
of alternatives or potential balances, as determined by the 
environment 

 The neocybernetic model is a model over the local minima 
rather than a model of the global optimum (assuming that an 
appropriate cost criterion is defined; see later) 

 

 Traditionally, the single global optimum is searched for in analysis and in design; 
this results in theoretical deadlocks (compare to NP problems: Finding a large 
number of suboptimal solutions is typically much simpler)  

 Also nature has no centralized master mind; it is facing the same optimization 
problems, seldom finding the strictly optimal solution: In this sense, the model 
over the local minima better captures the possible alternatives and essence 
(Remember Heraclitus: “You cannot step in the same river twice”) 



Physically meaningful or mathematically possible? 

 In theory, stability extremely rarely is encountered in 
arbitrary systems 
 The probability of a “completely random” n’th order linear continuous system 

to be stable is 1/2n 

 Indeed: The neocybernetic model is limited to a very narrow 
class of all possible dynamics – to those that are relevant in 
nature 

 It is assumed that stability is caused by some internal 
mechanisms; in cybernetic system these causal structures are 
constituted by negative feedback loops (see later) 

 The negative feedbacks are control structures; the different 
dynamic equilibria result from changing inputs (“reference 
signals”) – thus ... 



Systems of thermodynamic consistency ... 

 The neocybernetic model is a model-based (adaptive) 
controller trying to compensate the disturbances coming 
from the environment; further, this can be extended: 

 The neocybernetic model is a means of reaching  
maximum entropy (or “heat death”) of the environment! 
(These things are all discussed later) 
 

 In addition, there are also other views available that 
contradict traditional intuitions; indeed: 

 The neocybernetic model is a model of inverse thinking:  
For example, the relationships are “pancausal” rather than 
unidirectional; it is freedoms rather than constraints that are 
modeled, etc. 



... Intuitions applicable in different fields! 

 Intuitions can efficiently be exploited: Analogues can be 
extended to partial differential equation models 

 First, a mechanical analogue: 

 The neocybernetic model is an elastic system, where the 
internal tensions compensate the external forces. The 
deformations are proportional to the forces (behaving like a 
steel plate) whatever is their physical manifestation 

 Then, an electrical analogue: 

 The neocybernetic model is a model where neighboring 
cybernetic systems can be managed: There is maximum power 
transfer among the systems when they are matched so that 
their input and output impedances are equal 



“Pallas Athene Hypothesis” 

 It is by no means self-evident that 
mathematics can be used to 
explain nature; however, this far, it 
has been astonishingly efficient 

 Here this optimistic belief is taken 
as the starting point: The end of 
science is not yet there; complex 
systems can be modeled 

 Is this justified? 
 

 If it is, there exist strong modeling 
guidelines to be followed ... 

Compare to “Gaia Hypothesis” 

 Compare also to the Parallel Postulate! 



Additional intuition #1: Determinism 

 The above stability studies did not yet give guidelines to select 
the model structure – how to get forward? 

 Here – apply the “Pallas Athene Hypothesis”: Theory of 
complex systems does exists, so that systems have to be 
qualitatively more or less uniquely determined in each case 
(“free will” is a fallacy!) 

 The parameters are to be optimized in some sense, so that the 
representation is unique within that model framework 

 The neocybernetic model is (as it turns out) a “mirror image”  
of its environment, being itself a model of the environment, 
capturing relevant behavioral patterns as manifested in data  
(in a more or less unique manner). 



Symmetry – and beauty? 

 A system is 
surrounded by 
other systems 

 Symmetricity: 
Environment 
and a system 
have to be 
interchange-
able in the 
models 



Additional intuition #2: Linearity 

 System theoretic intuition: Linearity is essential in large-scale 
models – otherwise, no scalability and no predictability, etc.   
– that is, no general theory of complex systems could exist! 

 Here – again apply the “Pallas Athene Hypothesis”:      
Theory of complex systems does exists, so that models to be 
created have to be basically linear 

 Deficiencies in expressional power are compensated by  
high-dimensionality and interactions, resulting in stochastic, 
high-dimensional, dynamic feedback models 

 Linearity can be motivated in cybernetic steady-state models 
when it is assumed that only minor deviations take place around 
the balance of a smooth nonlinear dynamics 



Opposite intuitions #6 

 Nonlinearity = always the 
basic starting point in all 
studies of chaos and 
complexity theory! 

 Without nonlinearity 
qualitatively new 
phenomena cannot 
emerge – this IS true 
 

 
 

 Now: The final state can 
be studied without 
process nonlinearities 
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Conclusion – to be utilized ... 

 Intuition #1: Balance pursuit 
 Theoretical understanding: In steady state one can directly attack the emergent 

pattern and forget about the details of complex processes  

 Pragmatic understanding: Only in stable conditions, when fast phenomena have 
ceased, something fragile can emerge 

 Intuition #2: Linearity pursuit 
 Theoretical understanding: Natural processes are smooth, and around the 

equilibrium (locally) linear  

 Pragmatic understanding: Linearity is the only way to scalability and out from toy 
worlds 
 

 Motivations for both approaces 
 Heuristics: There is evolutionary advantage!?  

 Theory: Stronger tools are available for analysis and synthesis  

 Practice: It is clever to first study what can be reached with simple approaches  
– the assumptions can be relaxed (see later) 

 Can a “model of balances” be 
interesting in the linear case?! 



Opposite intuitions #7 

 Philosophically speaking, traditional science is based on 
Cartesian dualism, or the distinction between the observing 
subject and the observed object (or mind and matter) 

 Now, on the other hand, subjects and objects get mixed, as all 
entities are active – and because of pancausality, observation 
disturbs the observed 

 However, there will be another kind of dualism introduced: it 
turns out that “emformation” (free information or energy) 
determines the structure wherein the matter is manifested 

 Later on, when signals are analyzed in frequency domain, also 
Kantian transcendental idealism becomes challenged, as 
observations are not spatially and temporally determined. 



 System theoretic intuition also is: “To find scalable models for 
truly large systems, the model structure must be linear” 
(however, this constraint can be relaxed later) 

 Why? Let us study an example – assume that 
 

 

 where 
 

 

 This is almost linear ... it even looks simpler than a linear model 
(only the first quadrant is employed) 

 What kind of dynamics is possible here? 

Why linearity?  – Bonus example 
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 Computability theory: Any algorithm can be constructed using 
only increment and decrement operations and conditional 
branches 

 Each of these commands can be implemented using the given 
dynamic model! 

 Matrix A represents the program structure, and s represents the 
program “snapshot” (program counter + variable values) 
 

 Initial state (variable values) given in s(0) 

 One program step takes one to two steps in the system 

 If the program halts, the system state converges; the resulting 
variable values can be read in s 



 For example, the 
parity function  
can be coded as 
corresponding to 

input 

output 

 A compiler from 
program to system 
exists for Matlab 

entry point 



“Generalized parity function” 

0

1

2

0 1 2 3 4 5 6 7 8 9 10

s (0)
3

s (0)
1

 Eventual steady state values of s2 corresponding to different 
combinations of s1(0) and s3(0):  Points where the 

“traditional” parity 
function is defined 



Universal machine implemented 

 If the system is selected 
as shown here, there is 
no algorithm to say for all 
inputs s(0) whether the 
system is stable ... 
 

                                    A = 
 

 “If the algorithm claims 
that the iteration would 
remain bounded, it will 
not, and vice versa” ...! 

 Red dots 1’s,  
blue dots -1’s, 
other 0’s 



Universality and undecidability 

 A nonlinear high-dimensional 
system can implement any 
imaginable algorithm 

 Gödel’s incompleteness theorem 
applies 

 There will never exist a general 
theory of nonlinear systems! 
 

 When searching for a general 
model structure for complex 
systems, only for (essentially) 
linear systems one has hope. 

Kurt Gödel 



Report 133 

 Illustrates the problems encountered in nonlinear systems 

http://neocybernetics.com/report133/ 



 This example also illustrated that infinity can be addressed in 
finite space 

 It showed, too, that structured representations can be 
implemented through iteration with minor a priori complexity  

 So, there is motivation for cybernetic approaches: Loops (proper 
feedback) can do wonders 

 To what extent is the expressional 
power caused by the nonlinearity, 
and to what extent by the dynamic 
nature alone?! 

Give FEEDBACK! 



Modeling strategy – applied next time 

 Linear models are traditionally regarded as deficient, inferior, 
models for pragmatic uses – where does that come from? 
 

 The typical engineering-like route: Construct the model as exactly as possible, 
applying nonlinearities where appropriate 

 After that, locally linearize the model to boost applications; unfortunately, in this 
process the connections to the real system are lost 

 

 Now: Again, apply first physical principles exactly, never going 
to approximations 
 

 The application domain must not include explicit nonlinearities!  – Yes, there exist 
such complex domains  

 Modeling strategy to be followed: Avoid introducing nonlinearities if it is not 
absolutely necessary 

 Instead, apply understanding of dynamic systems 
and control + engineering intuitions about real 
life constraints and non-idealities 



 Stairs to step deeper are now available? 

 Iterate after the course! 


