
AS-74.4192  Elementary Cybernetics

Lecture 4:

Neocybernetic 
Basic Models



 Starting point when modeling real complex systems: 
 Observation: Bottom-up approaches (studying the mechanisms alone) is futile

 Another observation: Top-down approaches alone are similarly hopeless – there is 
no grounding

 Mission: Both views have to be combined
 One needs vision from top

 One needs substance from bottom

 Try to apply the ideas to a prototypical example: Modeling of  
neural networks – the best understood complex system (?)

 Remember that combining the two views is a big challenge: 
Computationalism (numeric) and traditional AI (symbolic) seem 
to be incompatible; low-level functions and high-level 
(emergent) functionalities are very different



1. What is the “deep structure” 
of the emergent patterns?

2. How to capture the attractors 
of changing behaviors?



Neocybernetic starting points – summary

 The details (along the time axis) are abstracted away, holistic 
view from the above is applied

 There exist local actions only, there are no structures of 
centralized control

 It is assumed that the underlying interactions and feedbacks 
are consistent, maintaining the system integrity

 This means that one can assume stationarity and dynamic
balance in the system in varying environmental conditions

 An additional assumption: Linearity is pursued as long as it is 
reasonable

Sounds simple – are there any new intuitions available?

Strong guiding principles for modeling



Modeling a neuron

 Neural (chemical) signals are pulse 
coded, asynchronous, ... extremely 
complicated

 Simplification: Only the relevant 
information is represented – the 
activation levels



Abstraction level #1

 Triggering of neuronal pulses is stochastic

 Assume that in stationary environmental conditions the 
average number of pulses in some time interval remains 
constant

 Only study statistical phenomena: Abstract the time axis 
away, only model average activity (cf. weak emergence!)

 Perceptron: Linear summation of input signals vj + activation 
function:

and linear version
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Still, remember the reality ...



 The emergence idea is exploited here – deterministic activity 
variables are employed to describe behaviors

 How to exploit the “first-level” neuron abstraction, how to 
reach the neuron grid level of abstraction?

 Neural networks research studies this – opposite ends:

1. Feedforward perceptron networks
 Non-intuitive: Black-box model, unanalyzable

 Mathematically strong: Smooth functions can be approximated to arbitrary 
accuracy

2. Kohonen’s self-organizing maps (SOM)
 Intuitive: Easily interpretable by humans (visual pattern recognition capability 

exploited)

 Less mathematical: A mapping from m dimensional real-valued vectors to n
integers

Now, again, trust deep structures 
more than surface patterns!



Hebbian learning

 Artificial neural networks are mainly seen as computational 
tools only

 To capture the functional essence of neuronal systems, one has 
to elaborate on the domain area 

 The Hebbian learning rule (by physician Donald O. Hebb) also 
dates back to mid-1900’s:*

“If the neuron activity correlates with the input signal, the 
corresponding synaptic weight increases”

 Are there some goals for neurons included here?! Is there 
something teleological taking place? 

 Bold assumptions make it possible to reach powerful models

* “When an axon of cell A is near enough to excite a cell B and repeatedly or persistently 
takes part in firing it, some growth process or metabolic change takes place in one or 
both cells such that A's efficiency, as one of the cells firing B, is increased.”



 Assume: Perceptron activity xi is a linear function of the input 
signal vj, where the vector wij contains the synaptic weight:

with

 Hebbian law applied in adaptation: Correlation between input 
and neuronal activity expressed as xinj, so that

assuming here, for simplicity, that m = 1. 

 This learning law is unstable – the synaptic weight grows 
infinitely, and so does xi !

Traditional approach
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 Stabilization by the Oja’s rule (by Erkki Oja):

 Motivation: Keeps the weight vector bounded (|Wi| = 1), and 
average signal size E{|xi|} = 1

 Extracts the first principal component of the data

 Extension: Generalized Hebbian Algorithm (GHA): Structural 
tailoring makes it possible to deflate pc’s one at a time

 However, the new formula is nonlinear: Analysis of neuron grids 
containing such elements is difficult, and extending them is 
equally difficult   – What to do instead?

Enhancements
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Compare to the 
logistic formulation 
of limited growth!



Level of synapses

 The neocybernetic guidelines are: Search for balance and 
linearity

 Note: Nonlinearity was not included in the original Hebbian law 
– it was only introduced for pragmatic reasons 

Are there other ways to reach stability – in linear terms?

 Yes – one can apply negative feedback:

or in matrix form
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Level of neuron grids

 Just the same principles can be applied when studying the 
neuron grid level – balance and linearity

 Distinguish sources:

and

so that                                     and

 To implement negative feedback, one needs to apply the 
anti-Hebbian action between otherwise Hebbian neurons:

so that the steady state becomes
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Hebbian/anti-Hebbian system

 Explicit feedback structures

 Completely localized operation, 
even though centralized matrix 
formulations applied to reach 
mathematical compactness 
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Different time scales – after all, u also varies

t

uj



uj

xi



uj

xi



uj

xi



Towards abstraction level #2

 Cybernetic model = statistical model of balances x(u)

 Assume dynamics of u is essentially slower than that of x and 
study the covariance properties: 

or

or

 Balance on the statistical level =  second-order balance
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Operator E connects the levels



Solution

 Expression fulfilled for  = qnD, where qn is a matrix of n of the 
covariance matrix eigenvectors, and D is orthogonal

 Loose motivation: This is because left-hand side is then

and right-hand side is

 Stable solution when qn contains the most significant data 
covariance matrix eigenvectors
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Accurate proof: Adaptation converges to PS

Study how the mapping matrices become adapted; assume that this process is divided in k steps:

The first part of this expression does not affect the subspace being spanned; so only B(k) is now of interest. Write 
it applying the basis axes spanned by the principal components of data, so that

and  

Now one has

meaning that in the mapping matrix the relevance of the principal component direction j is weighted by lj. 
Because the variables xi are linearly independent, it is the n most significant of those directions that only will 
remain visible in the mapped data after adaptation. – This completes the proof.
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Principal subspace analysis

 Any subset of input data principal components can be 
selected for 

 The subspace spanned by the n most significant principal 
components gives a stable solution

 Conclusion:

Competitive learning (combined Hebbian and 
anti-Hebbian learning) without any structural 
constraints results in self-regulation (balance) 
and self-organization (in terms of principal 
subspace).



Emergent patterns

 The process (convergence of x) can be substituted with the final 
pattern: Details are lost, but the essence remains (?)

 The pattern is characterized in terms of a cost criterion

 Models of local minima (m = 2, n = 1):
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Gradient descent 
minimization for 
the criterion!



Mathematics vs. reality

1. Correlations vs. covariances
 The matrices being studied are correlation matrices rather than covariance 

matrices (as is normally the case in PCA)

 This means that now data u is not assumed to be zero-mean, there is no need for 
preprocessing; in practice, the variables are always non-negative

 From physical point of view, this is beneficial: Note that the actual signal carriers 
(chemical concentrations / pulse frequencies) cannot be negative

2. Principal subspace vs. principal components
 When applying the linear structure, the actual principal components are not 

distinguished, only the subspace spanned by them 

 This means that the variables can again all be non-negative, so that the signals x
again can be physically plausible

 Indeed: If all uj are non-negative, and initially all xi have non-negative values, the 
xi’s will always be non-negative (so that one has a positive system)



Unification of layers

 Again, study a synapse; it is not a static mapping but a dynamic 
system (much faster than the grid dynamics)

 Assume this (trivial) system is also cybernetic:

or in balance

 Comparing this to the grid model, one can see that the two 
layers are qualitatively identical if one selects
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Technical experiments

 In technical terms, one can define the algorithm

where

 In practice, easiest implemented in discrete-time

 Matrix inversion lemma can be applied 

 Matrices can be masked to implement hierarchies, etc.
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 Principal 
subspaces 
found OK 
for different 
data sets

HAH = Hebbian/Anti-

Hebbian algorithm

Data 2Data 1

Data 4Data 3



 PC’s cannot 
always be 
told apart

Data 2Data 1

Data 4Data 3



Summary: Neocybernetic models

 First-order cybernetic system: For any stable A, assume that 
there holds

 Second-order cybernetic system: Additionally, assume that the 
matrices are

 Higher-order (optimized) cybernetic (parameterless!) system: 
Additionally, assume that
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Example: Hand-written digits

 There were a large body of 32×32 pixel images, representing 
digits from 0 to 9, over 8000 samples

Examples of typical “9”                Examples of less typical “9”



Algorithm for Hebbian/anti-Hebbian learning ...

LOOP – iterate for data in the kxm matrix U

% Balance of latent variables

Xbar = U * (inv(Exx)*Exu)';

% Model adaptation

Exu = lambda*Exu + (1-lambda)*Xbar'*U/k;

Exx = lambda*Exx + (1-lambda)*Xbar'*Xbar/k;

% PCA rather than PSA through structural constraints

Exx = tril(ones(n,n)).*Exx;

END

% Recursive algorithm can be boosted with matrix inversion lemma
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... resulting in Principal Components

 Parameters:

m = 1024

n = 25

l = 0.5

 Rather fast 
convergence, 
starting from 
q1 on top left

 Compression 
of data takes 
place

Avg “0” / “1”      “6” / “7”      “4” / “9”    “3” / “8” / “5” 
...



Summary of “Clever Agents”

 Emergence in terms of self-regulation (stability) and self-
organization (principal subspace analysis) reached

 This is reached applying physiologically plausible operations and 
model is linear – scalable beyond toy domains

 Learning is local – but not completely local: Need 
“communication” among neurons (anti-Hebbian structures)

 Roles of signals different: How to motivate the inversion in 
adaptation direction (anti-Hebbian learning)?

 Solution next: Apply non-idealities – in an unorthodox way!

 There exist no unidirectional causal flows in real life systems

 Feedback: Exploiting a signal exhausts that signal



“Stupid Agents”


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Simply “go for resources” 

 Again: Balancing is reached by feedback, but now not explicitly 
but implicitly through the environment

 Also environment finds its balance as time evolves and the 
iteration converges (see next slide)

 Only exploiting locally visible quantities, implement 
evolutionary adaptation as
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How to characterize this 
“environmental balance”?



Self-regulation assured ...

 Study how activity in the loop behaves for short time steps:

 One can write an approximation for the derivative as

 The system matrix has (regardless of the covariance matrix) 
always negative eigenvalues – thus the signals remain bounded, 
and so do the signals.
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... How about self-organization?

 Because                               , one can write two covariances:

and

so that
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Forget the trivial solution 
where xi is identically zero



 Similarly, if                                  for some (diagonal) matrix Q:

and

Note: this has to be symmetric, so that

Stronger formulation is reached:
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Equalization of environmental variances

 Because                    and                                     , q consists of the n
(most significant) eigenvectors of                 ,  and

 If n = m, the variation structure becomes trivial:

or

 Visible data variation becomes whitened by the feedback 

 Relation to ICA : Assume that this whitened data is further 
processed by neurons (FOBI) – but this has to be nonlinear!

 On the other hand, if qi are different, the modes become 
separated in the PCA style (rather than PSA)
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Still try to avoid nonlinearity!
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“Emergence of Intelligence”

 Solving for the balance signals, one can write

 This can be rewritten in a form where there is                  as the 
feedforward matrix, and                           as the feedback matrix

Of course, u has changed to u as it is the only signal visible

 It turns out that if the coupling increases, so that                , this 
structure equals the prior one with explicit feedback

 This means that in evolution (to be studied later closer) a 
selfish agent finally becomes a clever agent

 Without preprogramming, an agent becomes “context-aware”
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 Because

there must hold

and, further,                                                                         for any 
functions f and g

 What does this mean for covariance for different Q ?!

 The commutativity makes manipulations with the expressions 
simpler, for example...
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Variance inheritance

 Further – study the relationship between x and original u:

Multiply from the right by transpose, and take expectations:
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Solving for the latent covariance:

This means that the external and internal eigenvalues 
(variances) are related as follows:

– for pairs, there must hold
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1 n


2

Adding/subtracting
white noise

Adding
“black noise”

1 n

1/q

Effect of feedback = add “black noise”

 White noise = 
Constant increase 
in all directions

 “Black noise” = 
Decrease in all 
directions (if poss.)
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Results of orthogonal basis rotations
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Cybernetic view of data

Mathematical view of data

 Total variance 
above zero level 
intact regardless of 
the rotations

 Total variance 
above 1 changes!
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“Factor Analysis”

 Algorithm rotates the 
PCA subspace axes
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Towards differentiation of features

 A simple example of nonlinear extensions: CUT function

 If variable is positive, let it through; otherwise, filter it out –
Well in line with modeling of activity in neuronal systems:

 Frequencies cannot become negative (interpretation in terms of pulse trains)

 Concentrations cannot become negative (interpretation in terms of chemicals)

 Sizes of neuron populations cannot become negative 

 Power / information content cannot become negative, etc.

 Makes modes separated

 Still: End result almost linear!
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Symmetry breaking?!



Algorithm for Hebbian feedback learning...

LOOP – iterate for data in kxm matrix U

% Balance of latent variables
Xbar = U * (inv(Exx+inv(Q))*Exu)';

% Enhance sparsity by cut nonlinearity (or iterate by row)
Xbar = Xbar.*(Xbar>0);

% Balance of the environmental signals
Ubar = U - Xbar*Exu;

% Model adaptation
Exu = lambda*Exu + (1-lambda)*Xbar'*Ubar/k;
Exx = lambda*Exx + (1-lambda)*Xbar'*Xbar/k;

% To maintain system activity qi can be adapted according to diag(Exx)

END



... resulting in Sparse Components!

252422 2321
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 Parameters:

m = 1024

n = 25

l = 0.97

DEMO
digitfeat.m



 “Work load” becomes distributed

 Correlations between inputs and 
neuronal activities shown below: 252422 2321
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Sparse coding

 Traditional modeling goal – mathematically optimal and simple 
to implement: Minimize the overall size of the model

 Sparsity-oriented modeling goal – often physically relevant, but 
cumbersome to characterize: Minimize the number of 
simultaneously active representations while there are no acute 
constraints on the overall model size

 There is a tradeoff: too sparse model becomes inaccurate

 Note the (intuitive) connection to cognitive system:        
There are no acute constraints on the long-term memory (LTM), 
whereas the size of the working memory / short-term memory is 
limited to 7 +/– 2



Studied later ...

Visual V1 cortex seems to do this kind of decomposing



Evolution towards the neocybernetic model?!

 Hopfield networks (Hopfield 1982)

 Energy function and iterative process towards minimum = balance

 Boltzmann machines (Hinton, Sejnowski 1983)

 Simple local learning principle

 Restricted Boltzmann machines (Smolensky 1986, Hinton)

 Feedback only through the environment, real variables

 … Issues still to be solved to reach true acceptance:

 Stochastic learning to be made more consistent + faster

 Theoretical work to be done – complex task because of the distributions

 Explicit restrictions (like “no reciprocity”) to be relaxed, …



Conclusion: Clever vs. stupid agents

Both agent types can exist – resulting systems very different

x = q xu uE{ } 
T

x = xu uE{ } 
T

E{ }xx
T -1

“Intelligent agent” “Stupid/selfish agent”

Hebbian/anti-Hebbian
learning

Hebbian environmental
learning

u

x

u

xPrincipal Component
(Subspace) Analysis

Sparse Component
(Subspace) Analysis

Complete insulation (
elimination) of environment

or Stiffness regulation,
equalization of environment



Once more

Applying the neocybernetic principles 
there is emergence:

Local model of agent’s own behavior 
(average match among input and 
state) changes to a global model of 
the whole system’s behavior (sparse 
coded principal subspace basis).


