# **AS-74.4192 Elementary Cybernetics**

# Lecture 7: Emergent Models



- Often, the systems are seen from above, and the abstracted individual agents cannot easily be distinguished
- The experiences propose that the system variables can be analyzed in terms of PCA or related feature extraction
- So, the cyberneticity reduces to data preprocessing using traditional data compression means?

## NO - the claim here is that truly new thinking is needed

• It is not only preprocessing – now the whole chain of modeling changes, as well as the end results, or the models and their interpretations, and ways of their application.



## Once more: About cybernetic systems

- Abstract over individuals spatially and temporally
- Cybernetic system is a complex system that is characterized by dynamic equilibrium among opposing tensions
- The balances characterize dynamic attractors that are visible in the data and thus relevant in that domain
- Interacting systems are reactive, controlling each other, the overall dependencies becoming pancausal
- The system gets towards better and better coupling with its environment, meaning more fluent information flow
- During evolution (natural or not) the controls become more and more stringent and the overall system becomes stiffer
- Final result: "Degrees of freedom are eliminated" WHAT?



# Cost criteria characterizing behaviors

• The cost for social (clever) agents is

$$J(u) = \frac{1}{2} \overline{x}^T \left( \mathbf{E} \left\{ \overline{x} \overline{x}^T \right\} \right) \overline{x} - \overline{x}^T \mathbf{E} \left\{ \overline{x} u^T \right\} u$$

• Correspondingly, the cost for selfish agents is

$$J(u) = \frac{1}{2} \overline{x}^T \left( \mathbf{E} \left\{ \overline{x} \overline{x}^T \right\} + Q^{-1} \right) \overline{x} - \overline{x}^T \mathbf{E} \left\{ \overline{x} \overline{u}^T \right\} u$$

This can be written also as

$$J(u) = -\frac{1}{2}\overline{x}^{T} \left( E\left\{ \overline{x}\overline{x}^{T} \right\} + Q^{-1} \right) \overline{x}$$

Maximize "emergy"

or

$$J(u) = -\frac{1}{2} \overline{x}^T \mathbf{E} \left\{ \overline{xu}^T \right\} u. \quad \longleftarrow \quad \text{Maximize mutual information (as defined here)}$$



## About the emergent patterns

• The cost criterion characterizing cybernetic agents

$$J(u) = \frac{1}{2} \overline{x}^T \left( \mathbf{E} \left\{ \overline{x} \overline{x}^T \right\} + Q^{-1} \right) \overline{x} - \overline{x}^T \mathbf{E} \left\{ \overline{x} \overline{u}^T \right\} u$$

can be rewritten to read (because  $\bar{x} = \phi^T \bar{u}$ )

$$J(u) = \frac{1}{2} \overline{x}^T \phi^T \mathbf{E} \left\{ \overline{u} \overline{u}^T \right\} \phi \overline{x} - \overline{x}^T \phi^T \mathbf{E} \left\{ \overline{u} \overline{u}^T \right\} u + \frac{1}{2} \overline{x}^T Q^{-1} \overline{x}$$

• A new formulation for the "emergent pattern" is found:

$$J(u) = \frac{1}{2} \left( u - \phi \overline{x} \right)^T E \left\{ \overline{u} \overline{u}^T \right\} \left( u - \phi \overline{x} \right) + \frac{1}{2} \overline{x}^T Q^{-1} \overline{x} - \frac{1}{2} u^T E \left\{ \overline{u} \overline{u}^T \right\} u$$
Vanishes for Constant – no

clever agent

effect



# Pattern matching

One can also formulate the cost criterion as

$$J(x,u) = \frac{1}{2} (u - \phi x)^T E\{uu^T\} (u - \phi x)$$

- This means that the neuron grid carries out pattern matching of input data
- Note that the traditional maximum (log)likelihood criterion for Gaussian data (suffering of invertibility problems) would be

$$J(x,u) = \frac{1}{2} \left( u - \phi x \right)^T \left( E \left\{ u u^T \right\}^{-1} \right) \left( u - \phi x \right)$$

 Now: More emphasis on the most visible directions, in the direction of freedoms



# Models of today's systems: Constraints

- How can a (locally linear) model be described?
- Traditional analysis (modeling) and design (synthesis) methods are based on models of constraints

$$y = \theta^T \mu$$

Here,  $\theta$  is the vector of parameters,  $\mu$  contains the variables, and y is the output

- It is assumed that the data are somehow bound together, and it is this bond that captures the essence of the system
- Reason for this thinking is the dominant role of natural language when describing nature and natural laws (?)
- To "cybernetize" this, study a practical example ...



## Example

Take traditional system identification:
 Simple static matching between time-series data is done – giving constraint equations between signals in the form

$$y(k) = \sum_{i=1}^{n} a_i y(k-i) + \sum_{j=1}^{n} b_j u(k-j)$$

- However, huge amounts of theory has been devoted to this mainly due to two reasons:
  - The model structure does not exactly hold because there is noise; and these noise properties need to be analyzed as separate dynamical systems
  - All model parameters are assumed to be equally "visible" in data; as this is not the case, the algorithms can have lousy numerical properties





## Towards homogeneity

 Augment data vector to have a "homogeneous" view – include y among other data:

$$u = \begin{pmatrix} \mu \\ --- \\ y \end{pmatrix}$$
 and  $\Theta = \begin{pmatrix} \theta \\ --- \\ -1 \end{pmatrix} / \sqrt{1 + \theta^T \theta}$   $\Leftrightarrow$   $0 = \Theta^T u$ 

- Here all variables have an identical role
- Representation is non-unique to reach uniqueness,  $\Theta$  can be normalized to unit length above



The same variables are inputs to some and outputs to some other subsystems!

## Degrees of freedom

- In principle, if there are *n* independent variables, there are *n* degrees of freedom in the data space
- Traditional view: Each constraint equation decreases the degrees of freedom exactly by one (any one of the variables can be expressed as a linear combination of the others)
- However, in practice, the degrees of freedom differ from any integer number
  - Noise increases DOF back to n
  - Interdependencies (more or less explicit) decrease DOF in practice
- Modern view: DOF should be studied numerically rather than symbolically!
  - Compare to controllability/observability: Exactly zero determinants are never found from data – but in practice problems often emerge



# View from above: "Emergent Models"

- Data high-dimensional
- Few connections = constraints
- Many degrees of freedom left

- Data equally high-dimensional
- Many constraints
- Few degrees of freedom (right!)



DOF  $\phi x$ 

 $\sum_{i=0}^{d} a_{i} y(k-i) = \sum_{i=0}^{d} b_{j} u(k-j)$ 





- Claim: The degrees of freedom are more characteristic to a system than the constraints are
- Reason: In deeply interconnected systems, emphasis on freedoms is a more compact representation of the system
- The constraint model determines a line in the data space –
   "null space", where there is no freedom among data
- "Axes of freedom" = remaining subspace that is orthogonal to the null space = basis of a NEW MODEL STRUCTURE
- The eigenvalue decomposition of the data covariance matrix reveals in which directions there is variation in the data and how much: Eigenvectors = axes of freedom, and eigenvalues = their relevances



Remember that it was the principal subspace that was the key issue also in cybernetic populations!

## Example

#### Assume that

$$y(k) = ay(k-1).$$

Now

$$\Theta = \begin{pmatrix} \frac{a}{\sqrt{1+a^2}} \\ \frac{-1}{\sqrt{1+a^2}} \end{pmatrix}, \qquad u = \begin{pmatrix} y(k-1) \\ y(k) \end{pmatrix},$$





Normalized basis vectors spanning the whole space *S*:

Constraint
Axis of freedom



Now extend (defining redundancy among variables)

$$\begin{cases} y(k) = ay(k-1) \\ y(k+1) = ay(k). \end{cases}$$

In this case (without normalization):

$$\Theta' = \begin{pmatrix} a & 0 \\ -1 & a \\ 0 & -1 \end{pmatrix} \quad \text{and} \quad u = \begin{pmatrix} y(k-1) \\ y(k) \\ y(k+1) \end{pmatrix}.$$

The constraint span a two-dimensional subspace in the three-dimensional variable space – one degree of freedom remains



Orthogonalization of basis  $\Theta$ ' (Gramm-Schmidt procedure):



(eigensignal)

$$\Rightarrow \begin{pmatrix} a & \frac{a^2}{1+a^2} & \frac{1}{1+a^2+a^4} \\ -1 & \frac{a^3}{1+a^2} & \frac{a}{1+a^2+a^4} \\ 0 & -1 & \frac{a^2}{1+a^2+a^4} \end{pmatrix}$$

$$\Phi = \begin{pmatrix} 1 \\ a \\ a^2 \end{pmatrix} \sqrt{1+a^2+a^4}$$
Prototypes





$$y(k) = a_1 y(k-1) + a_2 y(k-2)$$

or

$$y(k) - a_1 y(k-1) + a_2 y(k-2) = 0$$

$$\downarrow a_0 y(k) - a_1 y(k-1) - a_2 y(k-2) = 0$$

$$\begin{vmatrix} a_0 \\ a_1 \\ a_2 \end{vmatrix}^T \begin{pmatrix} y(k) \\ y(k-1) \\ y(k-2) \end{pmatrix} = \Theta^T u(k) = 0$$

- Interpretation of the constraint: decaying harmonic wave?
- Interpretations of the degrees of freedom:

$$\phi_1 = \begin{pmatrix} 1 & 1 & 1 \end{pmatrix}^T$$

$$\phi_2 = \begin{pmatrix} -1 & 0 & 1 \end{pmatrix}^T$$



# Towards pattern matching

- Use of the model becomes an associative pattern matching process against data (exponential curve in the example)
- Linearity patterns can be freely scaled and added together
- Vector x is the vector of scaling factors = latent variables (note that generally  $\Phi$  is a matrix, containing several "axes of freedom" as collected together)

$$x(k) = \left(\Phi^T \Phi\right)^{-1} \Phi^T \cdot u(k)$$

• The reconstruction where noise is filtered is given as

$$\hat{u}(k) = \Phi \cdot x(k)$$

• The more there are internal constraints (feedbacks, etc.), the more efficient the freedoms-oriented approach becomes



If the degrees of freedom are design parameters, compression of the search space can be reached

## "Natural data" as sparse-coded features

- Many non-trivial domains can be modeled in terms of Gaussian mixture models – mutually exclusive Gaussians
  - Smooth nonlinearities = linear models around the operating point
  - Independent (sparse) components = overlapping data clusters





# Rules of game vs. strategies

- Constraints are the natural way to see the world partly because language defines connections among entities
- Wittgenstein said that all logical reasoning only consists of uninteresting tautologies
- Similarly in all domains, for example in mathematics, the axioms span the space of trivialities – it takes ingenuity to escape the constraints and detect the freedoms
- In some formal environments nontrivial DOF's can be found: For example, if *A* is a payoff matrix, and *x* and *y* are vectors containing choice probabilities of opponents, so that *xAy* is the average gain, the degree of freedom reveals the optimal zerosum game strategy, *A* containing the rules (constraints).



## Evolution in a new perspective

 As degrees of freedom become modeled and controlled, becoming new constraints, new innovations are perpetually needed to define new degrees of freedom – otherwise the system dimensions "collapse"



## "New Dialectics"

- Always two ends needed to define an axis
- For example, study the intellectual domain
  - According to Hegel (+ Marx + Kuhn + ...): First there is the Thesis – then an Antithesis is proposed
  - The Antithesis determines the "alternative direction", new way to see things
  - When there is enough discussion, and tensions are released, a balance is found: the "correct" location among the ends gets fixed = the Synthesis
  - In other words, the freedom gets controlled ...
  - ... and changes to rigid "standard science".
- Also, study a dialog among (two) persons:
   To understand each other, mental realms
   need to get coupled and balance be found





• An evolutionary process is a "saltationistic" alternation of chaotic divergence & deterministic convergence





## More colours to Darwin!

- How about mating?
- Darwinian theory: everybody wants to be the winner, all others are losers
- But only the winner can marry the winner; what about the others?
- Now: one tries to find a good match, one tries to find a mate that is similar, maximizing ones degrees of freedom
- Optimality criteria are personal





- In a physical system, there can be room for many in one niche; in higher-level systems, one is enough to exhaust it
- "Goal of life" is then to

find your own degrees of freedom and exploit that variation

 Here a degree of freedom is interpreted as a way data can be seen as information

So that

observations/experiences become relevant/reasonable in your own world!





## Further: Complex networks

- Internet, human networks, ...
- Complex networks are perhaps the most potential area of new methodologies
- However, the population thinking does no more hold: How to extend the framework?
- What does this mean from the point of "practical semiosis"?

Network structure should reflect functions: How to capture the net of interactions?

Interne



## Approaches to networks

## Graph theory

- Connections between nodes are "crisp"
- However, there is a continuum of interaction effects: The connections in reality are not of "all-or-nothing" type

#### Bayesian networks

- Strong probabilistic theory assuming that assumptions hold…
- However, the "nodes" in real networks are often not independent of each other:
   Loops and alternative paths exist in complex networks

## Now: Neocybernetic framework

- Numeric, non-crisp connections, fully connected
- "Pancausality" taken as the starting point: It is assumed that, in equilibrium, all nodes are causes and all are effects opposite approach!



# From emergent level back to the agents?

- As compared to earlier studies, inverse analysis now needed
- The network is system as seen from above, afterwards, as an end-effect of many components interacting
- One knows that a dynamic, yielding network is self-controlled result of a neocybernetic "stupid agents"
- The variables in the internal closed loops are already massively modified by the balancing interactions

## How to get back to the lower level, to the agents?

 Start from the beginning – applying neocybernetic modeling principles once more!



# Cybernetic intuition #1: Stationarity & statistics

- Abstract away individual actions and realizations of interactions in the network
- Assume that the stationary state has been reached
- What are the statistical properties of the system?
- As advertised by Barabasi etc., the emergent phenomena in the networks are characterized by the power law

$$y = z^D$$
 "SISO case"

- As observed before, this dependency seems to govern all structures with fractal and self-organized structure
- This is taken as starting point here and extended.



# Cybernetic intuition #2: Multivariate nature

Assume there are many variables of power law behavior:

$$\begin{cases} y = C_1 z_1^{D_1} \leftarrow \text{Parameter } c_1 \text{ constant with respect to } z_1 \\ \vdots & \text{These can be combined:} \end{cases} \qquad \frac{y}{\overline{y}} = \left(\frac{z_1}{\overline{z}_1}\right)^{D_1} \cdots \left(\frac{z_n}{\overline{z}_n}\right)^{D_n}$$

- Further, there can exist various such dependencies
- Variables can be rearranged; assume there are (normalized) input variables u and internal variables x (activities):

$$\begin{cases} x_1^{a_{11}} \cdots x_n^{a_{1n}} = u_1^{b_{11}} \cdots u_m^{b_{1m}} \\ \vdots \\ x_1^{a_{n1}} \cdots x_n^{a_{nn}} = u_1^{b_{n1}} \cdots u_m^{b_{nm}} \end{cases}$$



# Cybernetic intuition #3: Linearity pursuit

• The same dependencies can be expressed in various ways; the equivalent static set of equations (after taking logarithms) is

$$\begin{cases} a_{11} \log x_1 + \dots + a_{1n} \log x_n = b_{11} \log u_1 + \dots + b_{1m} \log u_m \\ \vdots \\ a_{n1} \log x_1 + \dots + a_{nn} \log x_n = b_{n1} \log u_1 + \dots + b_{nm} \log u_m \end{cases}$$

or, in matrix form

$$A \log x = B \log u$$

Nonunique representation of dependencies

where the logarithms are calculated elementwise.

There is a close connection to model structures found earlier



# Cybernetic intuition #4: Dynamicity vs. staticity

- Rather than being a static balance, the variable values result from a dynamic equilibrium among tensions caused by interactions
- The above set of equations is the dynamic balance of the following system (assuming that  $-\Gamma A$  is stable)

$$\frac{d(\log x)}{dt} = -\Gamma A \log x + \Gamma B \log u$$

... The familiar model again!

Intuitions available concerning internal interactions in the complex network

- Difference: Now logarithmic variables  $\log x$  and  $\log u$
- The balance based on local interactions can be returned to the neocybernetic framework



We already know how matrices *A* and *B* are selected in a system!?

• Model is multiplicative rather than additive – log variables

• Dynamics is caused by all components interacting rather than by individual agents

The variables have the interpretation of (scaled) probabilities



## Closer look at distributions

- "Logarithm of a quantity is a sum of many other logarithms"
- Assume the numbers being summed are probabilistic
- If they have the same distribution, the central limit theorem applies: Their sum has approximately normal distribution

$$p(\sum_{j} \log u_{j}) = c' \exp\left(-\left(\sum_{j} \log u_{j} - \mu\right)^{2} / 2\sigma^{2}\right)$$

• The sum has *log-normal distribution*: On the log/log scale, the distribution of a "multivariate fractal" quantity behaves quadratically rather than linearly!

$$\log\left(p(\sum_{j}\log u_{j})\right) = C - \left(\sum_{j}\log u_{j} - \mu\right)^{2} / 2C^{2}$$





- Longer "tails" than in normal distribution
- Ends not so
   emphasized as in
   power law
   distribution



 Quadratic curves are better than linear!







## Networks – systems as seen from outside

- Many things are changed, how about adaptation principles?
- As seen from above, the system tries to become better controlled, maximum variation directions being emphasized; optimization can be implemented by local actors familiarly...
- It seems that the Hebbian law is inverted now: When  $\log x_i$  and  $\log u_j$  correlate, their coupling is tuned down rather than up, high correlations meaning strong adaptation tension
- ullet On the microscale, this emergent learning rule is manifested in variations becoming equalized + stiffnesses  $q_i$  increasing
- Opposite views: The environmental variation is (naturally!)
   minimized as the system-level variations are maximized



# Concrete motivation: Chemical systems

- Can chemical systems be seen as such "action networks"?!
- Prototypical reaction

$$a_1 \mathbf{A}_1 + \dots + a_N \mathbf{A}_N \longrightarrow b_1 \mathbf{B}_1 + \dots + b_M \mathbf{B}_M, \quad \Delta H$$

• First, a more general formulation for this is needed – the reaction has to be presented in vector form, etc. ...











### Intuition #1: Problem formulation

First augment the reaction:

$$a_1C_1 + \cdots + a_mC_m \stackrel{k_f}{\rightleftharpoons} b_1C_1 + \cdots + b_mC_m, \quad \Delta H$$

here, there are all chemicals on both sides;  $a_i$  and  $b_j$  can be zeros. Reactions are assumed reversible ( $k_b$  can be zero).

• Collect all chemical concentrations in a single data matrix u; then one can write  $\Delta u = r \theta$  where r is reaction rate, and

$$\Delta u = \begin{pmatrix} \Delta C_1 \\ \vdots \\ \Delta C_m \\ \overline{\Delta T} \end{pmatrix} \quad \text{and} \quad \theta = \begin{pmatrix} b_1 - a_1 \\ \vdots \\ b_m - a_m \\ \overline{c_T} \end{pmatrix}$$



• If there are many simultaneous reactions, the changes in the system state can be expressed in the matrix form

$$\Delta u = r^T \Theta$$

- This kind of approach is known as "flux balance analysis" (also compare to reaction invariants)
- However, it is difficult to keep track of all fluxes (for example, to master temperatures, the system should be isolated)
- Flux balance captures the stoichiometric balance = more or less formal balance
- There is no information of whether the reactions actually take place or not – one needs the functional or dynamic balance



# Intuition #2: Thermodynamic equilibrium

- Reaction speed  $k_{\rm f}$  is related to probability of unit reaction is related to probability of the constituents to be located near enough each other is related to chemical concentrations
- In strong liquids activities substitute concentrations
- Reaction speed is also dependent of the temperature (Arrhenius law) – altogether

$$k_{\rm f} = c_{\rm f} \ e^{-a_T/T} \ C_1^{a_1} \cdot \dots \cdot C_n^{a_n}$$
  $k_{\rm b} = c_{\rm b} \ e^{-b_T/T} \ C_1^{b_1} \cdot \dots \cdot C_n^{b_n}$ 

 In equilibrium, the reactions forward and backward are equal, and there holds

$$K = \frac{e^{-b_T/T}}{e^{-a_T/T}} \frac{C_1^{b_1} \cdots C_n^{b_n}}{C_1^{a_1} \cdots C_n^{a_n}}$$



# Intuition #3: Linearity

Again, the function is purely multiplicative – take logarithms:

$$\log K = (a_T - b_T) 1 / T + (b_1 - a_1) \log C_1 + \dots + (b_n - a_n) \log C_n$$

 To get rid of constants and logarithms, it is also possible to differentiate the expression

$$0 = (b_T - a_T) \Delta \left(\frac{1}{T}\right) + (b_1 - a_1) \frac{\Delta C_1}{\overline{C}_1} + \dots + (b_n - a_n) \frac{\Delta C_n}{\overline{C}_n}$$

where the variables are deviations from the nominal values, divided by those nominal values

• The differentiated model is only locally applicable, valid in the vicinity of the nominal value



 Acidity is logarithmic measure, and its absolute value can be directly included in data:

$$pH = -\lg C_{H^+}$$

 Non-balance compounds can be included in data: Assume that G denotes the rate of change, or flow, into / out from the system, so that in balance, for example

$$\frac{\Delta \dot{C}_0}{\overline{\dot{C}}_0} = b_T \Delta \left(\frac{1}{T}\right) + b_1 \frac{\Delta C_1}{\overline{C}_1} + \dots + b_n \frac{\Delta C_n}{\overline{C}_n}$$



Relative change in flow



# Intuition #4: Multiple reactions

• Now, when the reaction parameters are collected in vector  $\phi$ , there holds

$$0 = \Phi^T u$$

This holds also if there exist simultaneous reactions, so that  $\Phi$  is a matrix

- Compare to flux balance analysis: Now one only needs to study levels (causing "chemical pressures"), not changes
- This is essential in complex chemical systems: The levels can better be controlled than the individual reactions
- Linear emergent models of balances are not only models for the data but system models



# Example: Printed Circuit Board manufacturing

- In PCB manufacturing extra nickel layer is used
  - as an oxidation barrier between copper and gold
  - to bring wear resistance to the boards
- Crucial parameters:
  - Nickel layer thickness 4.5 μm
  - Phosphorous content 8.5 wt.%
    - corrosion resistance
    - solderability
- How to supervise and control these parameters?
  - No on-line measurements available
  - Time delay of laboratory measurement considerable





# Getting into details ...

Electrochemical reaction mechanism (one out of seven models proposed!)

Anodic reaction:

$$H_2PO_2^- + H_2O \longleftrightarrow H_2PO_3^- + 2H^+ + 2e^-$$

Cathodic reactions:

$$H_2PO_2^- + 2H^+ + e^- \longrightarrow P + 2H_2O$$

$$2H^+ + 2e^- \longrightarrow H_2$$

$$Ni^{2+} + 2e^{-} \longrightarrow Ni$$

• For each of these reactions the current densities in different locations can be calculated from Buttler-Wolmer equation

$$\mathbf{i}_{n} = i_{0n} \mu_{n} \left\{ exp(v\alpha_{an} p_{n} k \eta_{n}) - exp(-v\alpha_{an} p_{n} k \eta_{n}) \right\}$$







HELSINKI UNIVERSITY OF TECHNOLOGY Department of Automation and Systems Technology Cybernetics Group

Linearity – integrals traverse through the model

# PCR results for layer thickness

- Available output data parts
  - 1 estimation set
  - 2 validation sets
  - Only two latent variables applied

- Balance assumed
- Logarithmic variables
- Linear PCR model







## **Validation**





# PCR results for phosphor









Too little information available!

### It seems that

- the neocybernetic model produces accurate estimation/validation results, even better than the electrochemical model
- it provides an insight into significance of variables
- From the practical point of view
  - the model is easy to implement and maintain, it improves production quality and lowers measurement expenses (?)
  - not all reactions need to be known ignorance of variables does not matter as long as the system remains stable, one can concentrate on the freedoms
  - the still unbounded degrees of freedom can be regulated "Superorganisms" can be constructed by external explicit feedbacks!



... Next, a more ambitious case ...

# Cell level #1: Metabolic system

Constraints = Balance equations

Very different from flux balance analysis

- DOF's = Metabolic behaviors
- Anthropocentric interpretations: Nutrient, waste product
- When complexity cumulates, the balance reactions start looking goal-oriented, preplanned, and "clever"
- For example, scarcity of some chemical changes the balance appropriately





# Cell level #2: Genetic system

- Active genes determine the enzymes (proteins) available = the reactions actually taking place in the cell
- Special enzymes act as transcription factors, activating (or inhibiting) other genes
- The gene activation relationships constitute a causal network
- Traditional graphs are too "qualitative" (all or nothing), and networks become too dense and intangible
- Alternative approach again: Assume "pancausality"
- In equilibrium, causal "forces" balance each other even though the circumstances differ
- Static model rather than sequential, dynamic ones



# ... Two cybernetic levels of cell processes

### Appropriate abstractions:

- Two successive process levels of "generalized diffusion"
- Metabolic processes fast, genetic ones slow
- In both cases, forget about the sequential nature
- Emergent models based on latent (logarithmic) variables
- Both levels same approaches!?





n = 4 only! dim(u) = 10dim(y) = 4135

Step tests:

254
"stress genes" shown







 A system model can be applied also for design and control: The observed correlations are also causalities, changing a variable value affects the system, making the other variables search a new balance





### Conclusion

- Freedoms define the directions where variations "make a difference that makes a difference" (G. Bateson)
- Traditionally: constraints world as it is / has to be
- Cybernetically: freedoms "world as it could be"
- One goes from info transfer to negotiation (feedforward vs. feedbacks); from hard controls to persuasion (imposed vs. natural dynamics)
- In applications, the role of human changes from implementing controls to acting as a catalyst



One is near practical applications of cybernetics here...