AS-74.4192 Elementary Cybernetics

Lecture 7:
Emergent Models




Often, the systems are seen from above, and the abstracted
individual agents cannot easily be distinguished

The experiences propose that the system variables can be
analyzed in terms of PCA or related feature extraction

So, the cyberneticity reduces to data preprocessing using
traditional data compression means?

NO - the claim here is that truly new thinking is needed

It is not only preprocessing — now the whole chain of modeling
changes, as well as the end results, or the models and their
interpretations, and ways of their application.

HELSINKI UNIVERSITY OF TECHNOLOGY

ment of Automation and Systems T'echnology

Cybernetics Group



Once more: About cybernetic systems

e Abstract overindividuals spatially and temporally

e (Cybernetic system is a complex system that is characterized by
dynamic equilibrium among opposing tensions

e The balances characterize dynamic attractors that are visible in
the data and thus relevant in that domain

e Interacting systems are reactive, controlling each other, the
overall dependencies becoming pancausal

e The system gets towards better and better coupling with its
environment, meaning more fluent information flow

e During evolution (natural or not) the controls become more and
more stringent and the overall system becomes stiffer

% e Final result: “Degrees of freedom are eliminated” - WHAT?
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Cost criteria characterizing behaviors

e The cost for social (clever) agents is
J(u) ——x (E{WT})Y—YTE{YUT}U
o Correspondmgly, the cost for selfish agents is
_ 1 - oo T 1\ T (oT
J(u) _EX (E{xx }+Q )x—x E{xu }u
This can be written also as

J (U) —— X (E {WT } + Q_l ) X <—— Maximize “emergy”
or

J (U) — _E YT E {WT } U. <«—— Maximize mutual information (as defined here)

%
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About the emergent patterns

e The cost criterion characterizing cybernetic agents
J(u)——x (E{WT}+Q‘1)Y—YTE{WT}U
can be rewritten to read (because X = ¢'l)
1 1
JU)==X'¢'E{lU" {gX—-X'¢'E{UU" fu+=X QX
(u) = X"$TE{UU" 4X —XT¢TE{TU ju+—X'Q

e A new formulation for the “emergent pattern” is found:

J(u) ( ¢X) { }@%YTQlf—%UTE{U_T

Vanishes for Constant - no
/f%; clever agent effect
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Pattern matching

e One can also formulate the cost criterion as
J(X,u) = (u ¢x) { }(u — ¢X)

e This means that the neuron grid carries out pattern matching of
input data

e Note that the traditional maximum (log)likelihood criterion for
Gaussian data (suffering of invertibility problems) would be

J(x,u)== (u ¢x)u—¢x)

e Now: More emphasis on the most visible directions, in the
ﬁ direction of freedoms

////“’é
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Models of today’s systems: Constraints

e How can a (locally linear) model be described?

e Traditional analysis (modeling) and design (synthesis) methods
are based on models of constraints

.
y=0" u

Here, 0 is the vector of parameters, u contains the variables,

andy is the output

e [tis assumed that the data are somehow bound together, and it
is this bond that captures the essence of the system

e Reason for this thinking is the dominant role of natural language
when describing nature and natural laws (?)

~ e To ‘““cybernetize” this, study a practical example ...
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Example

e Take traditional system identification:

Simple static matching between time-series data is done -
giving constraint equations between signals in the form

Y() = & y(k=i)+ . byu(k- )

e However, huge amounts of theory has been devoted to this -

mainly due to two reasons:
e The model structure does not exactly hold because there is noise; and these noise
properties need to be analyzed as separate dynamical systems

e All model parameters are assumed to be equally “visible” in data; as this is not
the case, the algorithms can have lousy numerical properties

= e Now: Both of these problems will be solved (by accident!?)

(72
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Towards homogeneity

e Augment data vector to have a “homogeneous” view —
include y among other data:

() )
Y7 0

U= and ©= //m

Y L

e Here all variables have an identical role

e Representation is non-unique — to reach uniqueness, ® can
be normalized to unit length above

A

(/f The same variables are inputs to some and |-
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Degrees of freedom

e In principle, if there are nindependent variables, there are n
degrees of freedom in the data space

e Traditional view: Each constraint equation decreases the
degrees of freedom exactly by one (any one of the variables can
be expressed as a linear combination of the others)

e However, in practice, the degrees of freedom differ from any

integer number

e Noise increases DOF back ton
e Interdependencies (more or less explicit) decrease DOF in practice

e Modern view: DOF should be studied numerically rather than
symbolically!

e Compare to controllability/observability: Exactly zero determinants are never
found from data - but in practice problems often emerge
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X

View from above: “Emergent Models”

e Data high-dimensional e Data equally high-dimensional
e Few connections = constraints e Many constraints
e Many degrees of freedom left e Few degrees of freedom (right!)

DX PX

The m on changes = el structure changes

degeneracy

order
d

-i)= > bu(k—])

d

d d

> ayk-i)= bu(k-j)

i=0 =0
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Constraints vs. freedoms

determinism vs. stochastics?

e Claim: The degrees of freedom are more characteristic to a
system than the constraints are

e Reason: In deeply interconnected systems, emphasis on
freedoms is a more compact representation of the system

e The constraint model determines a line in the data space -
“null space”, where there is no freedom among data

e “Axes of freedom” = remaining subspace that is orthogonal
to the null space = basis of a NEW MODEL STRUCTURE

e The eigenvalue decomposition of the data covariance matrix
reveals in which directions there is variation in the data and
how much: Eigenvectors = axes of freedom, and

4 eigenvalues = their relevances

(174
A - . —
T T I T T T T T T T T et emember that it was the principal subspace that was
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Example

e Assume that y(k) o y(k)=ay(k-1)
k) =ay(k —1).
y(k) =ay(k -1) Yk
Now i
4 a A a
o | v | (vk-D o= "7
-1 | y(k) )’ oo
\vV1+a® )

Normalized basis
so that a <« 1 vectors spanning the

N ﬁ\ whole space S:

-1 a - Constraint
% 1+a® | J1+a° \ Axis of freedom
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e Now extend (defining redundancy among variables)

{ y(k) =ay(k -1)
y(k +1) = ay (k).

In this case (without normalization):

O'=

The constraint span a two-dimensional subspace in the three-
dimensional variable space — one degree of freedom remains

(a

L0

-1 a

0 )

_1)

(y(k-1))

y(k)

LY(k+1))
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1
a 0
-1 0

“Deflation”

(Where is this

vector from?)

a

— | -1

a
3
a a
- | -1 > >
l1+a“})i 1+a
0 \—y 0
a’ 1
1+a” | 1+a*+a*
a’ a
1+a® i 1+a*+a’
2
a
-1 2 4
l1+a“+a

e Orthogonalization of basis ®’ (Gramm-Schmidt procedure):

“Axis of freedom”
exponential form
(eigensignal)

(1)

d

¥ //1+ a‘+a*
"/
‘—j/

Prototypes

0
7
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y(k) = a,y(k-1)+a,y(k~2)
or T
y()-ayk-D+ayk-2=0 (%] [ Y0 |
| Jla | | (k-1 |=0"u(k) =0
y(k)—ayk-1)-ayk-2)=0 |45 | |yk-2),

e Interpretation of the constraint: decaying harmonic wave?
e Interpretations of the degrees of freedom:

T
e First: Filtered mean value, level ) =( 111 )

T
e Second: Filtered trend, direction =(-1 0 1
/ ggg ¢ = )

G
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Towards pattern matching

e Use of the model becomes an associative pattern matching
process against data (exponential curve in the example)

e Linearity — patterns can be freely scaled and added together

e Vector xis the vector of scaling factors = latent variables (note
that generally @ is a matrix, containing several “axes of
freedom” as collected together)

x(k) = (®'®) " @ -u(k)
e The reconstruction where noise is filtered is given as
G(k) = @ - x(k)

e The more there are internal constraints (feedbacks, etc.), the

fficient the freedoms-oriented approach becomes
//:g more e
Z !

@ If th i
e degrees of freedom are design parameters
\ HELSINKI UNIVERSITY OF TECIHNOLOGY g © © gnp !
compression of the search space can be reached
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““Natural data” as sparse-coded features

e Many non-trivial domains can be modeled in terms of Gaussian
mixture models — mutually exclusive Gaussians

e Smooth nonlinearities = linear models around the operating point
e Independent (sparse) components = overlapping data clusters

Data Type 1 Data Type 2 Data Type 3

% Smooth nonlinearities Clustered data Independent components
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. Rules of game vs. strategies

e (Constraints are the natural way to see the world — partly
because language defines connections among entities

e \Wittgenstein said that all logical reasoning only consists of
uninteresting tautologies

e Similarly in all domains, for example in mathematics, the axioms
span the space of trivialities — it takes ingenuity to escape the
constraints and detect the freedoms

e In some formal environments nontrivial DOF’s can be found: For
example, if A is a payoff matrix, and X and y are vectors
containing choice probabilities of opponents, so that xAy is the
average gain, the degree of freedom reveals the optimal zero-
sum game strategy, A containing the rules (constraints).

Forms of “life”’ are constraints-induced
emergent strategies in an environment

HELSINKI UNIVERSITY OF TECIHHNOLOGY
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Evolution in a new perspective

e As degrees of freedom become modeled and controlled,
becoming new constraints, new innovations are perpetually

needed to define new degrees of freedom - otherwise the
system dimensions ‘“collapse”

Randomness
“Free will”’

Degree of freedom Contingency

~

‘\iybernetization
D

Innovation

B X “Stiffness”

Convergence
% Determinism
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““New Dialectics”

e Always two ends needed to define an axis
e For example, study the intellectual domain

e Also, study a dialog among (two) persons:
To understand each other, mental realms
need to get coupled and balance be found

According to Hegel (+ Marx + Kuhn + ...): First there is
the Thesis — then an Antithesis is proposed

The Antithesis determines the “alternative direction”, new way to see things

When there is enough discussion, and tensions are released, a balance is found:
the “correct” location among the ends gets fixed = the Synthesis

In other words, the freedom gets controlled ...
... and changes to rigid “standard science”.
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e An evolutionary process is a “saltationistic” alternation of
chaotic divergence & deterministic convergence

Innovation
Exploitation

OO

)
X

% Exhaustion
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A

‘ﬁ

More colours to Darwin!

e How about mating?

e Darwinian theory: everybody
wants to be the winner, all others
are losers

e But only the winner can marry the
winner; what about the others?

e Now: one tries to find a good
match, one tries to find a mate
that is similar, maximizing ones
degrees of freedom

e Optimality criteria are personal

ELSINKI UNIVERSITY OF TECHNOLOGY : . L :
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e In a physical system, there can be room for many in one niche;
in higher-level systems, one is enough to exhaust it

e “Goal of life” is then to

find your own degrees of freedom and exploit that variation

e Here a degree of freedom is interpreted as

a way data can be seen as information

e So that

observations/experiences become
relevant/reasonable in your own world!
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Further: Complex networks

e Internet, human networks, ...

e Complex networks are perhaps
the most potential area of new
methodologies

e However, the population
thinking does no more hold:
How to extend the framework?

e What does this mean from the
point of “practical semiosis’’?

Network structure should reflect functions:
How to capture the net of interactions?
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Approaches to networks

e Graph theory

e Connections between nodes are “crisp”

e However, there is a continuum of interaction effects: The connections in reality
are not of “all-or-nothing” type

e Bayesian networks

e Strong probabilistic theory — assuming that assumptions hold...

e However, the “nodes” in real networks are often not independent of each other:
Loops and alternative paths exist in complex networks

e Now: Neocybernetic framework

e Numeric, non-crisp connections, fully connected
e ‘Pancausality” taken as the starting point: It is assumed that, in equilibrium, all

% nodes are causes and all are effects — opposite approach!
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From emergent level back to the agents?

As compared to earlier studies, inverse analysis now needed

The network is system as seen from above, afterwards, as an
end-effect of many components interacting

One knows that a dynamic, yielding network is self-controlled -
result of a neocybernetic “stupid agents”

The variables in the internal closed loops are already massively
modified by the balancing interactions

How to get back to the lower level, to the agents?

Start from the beginning — applying neocybernetic modeling
principles once more!

\ HELSINKI UNIVERSITY OF TECHNOLOGY
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Cybernetic intuition #1: Stationarity & statistics

e Abstract away individual actions and realizations of interactions
in the network

e Assume that the stationary state has been reached
e What are the statistical properties of the system?

e As advertised by Barabasi etc., the emergent phenomena in the
networks are characterized by the power law

y = z° “SISO case”

e As observed before, this dependency seems to govern all
structures with fractal and self-organized structure

_~ o This is taken as starting point here — and extended.
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Cybernetic intuition #2: Multivariate nature

J\

k V@Z?“

e Further, there can exist various such dependencies

Y
y

Zy

Zy

e Assume there are many variables of power law behavior:

y :@Z <+— Parameter ¢, constant with respect to z,
These can be combined:

Z,
Z

|

e Variables can be rearranged; assume there are (normalized)

input variables u and internal variables x (activities):

u ..

/Z%ﬁ k)(fnl...

./_/;g

u

bnl .

1

Ths

-« U

bnm
m

‘é’

Cybernetics Group
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Cybernetic intuition #3: Linearity pursuit

e The same dependencies can be expressed in various ways; the
equivalent static set of equations (after taking logarithms) is

(a,logx + -+ +a,logx, =b,logu, + --- +b, logu,

Ay logx, + --- +a,,logx. =b logu + --- +b_logu_
or, in matrix form
Alogx =B logu Nonunique representation of dependencies

where the logarithms are calculated elementwise.
% There is a close connection to model structures found earlier

\/g'

HELSINKI UNIVERSITY OF TECHNOLOGY
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Cybernetic intuition #4: Dynamicity vs. staticity

e Rather than being a static balance, the variable values result
from a dynamic equilibrium among tensions caused by
interactions

e The above set of equations is the dynamic balance of the
following system (assuming that —['A is stable)

d (Iog X) Intuitions available
dt =—T'Alogx+1IB logu concerning internal
interactions in the
... The familiar model again! complex network

e Difference: Now logarithmic variables log x and log u

e The balance based on local interactions can be returned to the
neocybernetic framework

A

‘j We already know how matrices Aand |

HELSINKI UNIVERSITY OF TECHNOLOGY .
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e Model is multiplicative rather than additive - log variables

e Dynamics is caused by all components interacting rather than by
individual agents

e The variables have the
interpretation of (scaled)
probabilities
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Closer look at distributions

e “Logarithm of a quantity is a sum of many other logarithms”
e Assume the numbers being summed are probabilistic

e If they have the same distribution, the central limit theorem
applies: Their sum has approximately normal distribution

p(zj logu;) :c'exp(—(zjlog u, _lu)z/Zazj

e The sum has log-normal distribution: On the log/log scale, the
distribution of a ““multivariate fractal”’ quantity behaves
quadratically rather than linearly!

og(p(X, logu,)) <©- (3 logu, @2/@
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X

10 ¢
Power law distribution
Cybernetic distribution
107
Gaussian
distribution
10_2:*
10-30 | | “““‘1 2
10 10 10 \ 10

e Longer “tails”
than in normal
distribution

e Ends notso
emphasized as in
power law
distribution

HELSINKI UNIVERSITY OF TECHNOLOGY
Department of Automation and Systerns 'l'echilo]og_\'

Cy bernetics G roup



e Quadratic
curves are
better than
linear!

Extents of
forest fires
(from Science)

10'

10°

10"

10?

In I I 1 1 ] T
B A _
- Slope =-1.31 y
10* 10° 10 10 1® 10 10° 100 10
: C
Slope =-1.43
| 1 | i
10° 10' 107 10° 10*

10"

10? |

10° |

Slope =-1.34

10’

10*

[ Slope =-1.49

102

107

10°

10'
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Networks — systems as seen from outside

e Many things are changed, how about adaptation principles?

e As seen from above, the system tries to become better
controlled, maximum variation directions being emphasized,;
optimization can be implemented by local actors familiarly...

e |t seems that the Hebbian law is inverted now: When log x; and
log u; correlate, their coupling is tuned down rather than up,
high correlations meaning strong adaptation tension

e On the microscale, this emergent learning rule is manifested in
variations becoming equalized + stiffnesses (; increasing

e Opposite views: The environmental variation is (naturally!)
minimized as the system-level variations are maximized

HELSINKI UNIVERSITY OF TECHNOLOGY
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Concrete motivation: Chemical systems

e (Can chemical systems be seen as such “action networks”?!

e Prototypical reaction
aA +---+a, Ay, —— bB,+:---+b,B,, AH

e First, a more general formulation for this is needed - the
reaction has to be presented in vector form, etc. ...

) & ALY
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Intuition #1: Problem formulation

e First augment the reaction: /Enthalpy
kf
aC +--+aC =2 bC +---+b C , AH
kb

here, there are all chemicals on both sides; a; and b; can be
zeros. Reactions are assumed reversible (k, can be zero).

e (ollect all chemical concentrations in a single data matrix u;
then one can write Au = r @ wherer is reaction rate, and

[ AC, (b,—a, )
A = —
u AC and 6 b —a
A AT . o)
/.//;j:ifg
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If there are many simultaneous reactions, the changes in the
system state can be expressed in the matrix form

Au=r"'0
This kind of approach is known as “flux balance analysis” (also

compare to reaction invariants)

However, it is difficult to keep track of all fluxes (for example,
to master temperatures, the system should be isolated)

Flux balance captures the stoichiometric balance = more or less
formal balance

There is no information of whether the reactions actually take
place or not — one needs the functional or dynamic balance

HELSINKI UNIVERSITY OF TECHNOLOGY
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Intuition #2: Thermodynamic equilibrium

e Reaction speed k; is related to probability of unit reaction is
related to probability of the constituents to be located near
enough each other is related to chemical concentrations

e In strong liquids activities substitute concentrations

e Reaction speed is also dependent of the temperature
(Arrhenius law) — altogether

kf :Cf e_aT/T Clal ""'Can kb :Cb e_bT/T Clbl ""'Cbn

n

e In equilibrium, the reactions forward and backward are equal,
and there holds

HELSINKI UNIVERSITY OF TECIHHNOLOGY
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Intuition #3: Linearity

e Again, the function is purely multiplicative — take logarithms:
logK =(a; —b; )1/T +(b,—a,)logC, +---+ (b, —a,)logC,

e To getrid of constants and logarithms, it is also possible to
differentiate the expression

1 AC
0= (b~ )A[ 2]+ (b -a) S04+ (0,2, 55

1 n

where the variables are deviations from the nominal values,
divided by those nominal values

e The differentiated model is only locally applicable, valid in the
vicinity of the nominal value

HELSINKI UNIVERSITY OF TECHNOLOGY

Departinent of Automation and Systems T'echnology



A

e Acidity is logarithmic measure, and
its absolute value can be directly
included in data:

pH=-1gC ..

e Non-balance compounds can be
included in data: Assume that G
denotes the rate of change, or
flow, into [ out from the system, so
that in balance, for example

AC, bA(lj AC,
Co T Cl

--+bnb

log G,

Relative
change /

in ﬂow/y

HELSINKI UNIVERSITY OF TECHNOLOGY
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Intuition #4: Multiple reactions

e Now, when the reaction parameters are collected in vector ¢,
there holds

0= u
This holds also if there exist simultaneous reactions, so that @ is

a matrix

e Compare to flux balance analysis: Now one only needs to study
levels (causing ‘“chemical pressures”), not changes

e This is essential in complex chemical systems: The levels can
better be controlled than the individual reactions

e Linear emergent models of balances are not only models for the
data but system models

HELSINKI UNIVERSITY OF TECIHHNOLOGY
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Example: Printed Circuit Board manufacturing

e In PCB manufacturing extra A

nickel layer is used
e as an oxidation barrier between copper

and gold Cu
e to bring wear resistance to the boards

e Crucial parameters: Fr-4

e Nickel [ayer thickness 4.5 um

e Phosphorous content 8.5 wt.%
e corrosion resistance
e solderability

e How to supervise and control these parameters?

e No on-line measurements available
% e Time delay of laboratory measurement considerable

a
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Getting into details ...

e Electrochemical reaction mechanism (one out of seven models
proposed!)

e Anodic reaction: _

e (Cathodic reactions:

e For each of these reactions the current densities in different
locations can be calculated from Buttler-Wolmer equation

in = iOn H { exp(vaan pn knn ) _ eXp(_vaan pn knn )}

\ HELSINKI UNIVERSITY OF TECIHHNOLOGY To some extent unknown
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PCR results for layer thickness

e Available output data parts e Balance assumed
e 1estimation set e Logarithmic variables

e 2 validation sets e Linear PCR model
e Only two latent variables applied

e Estimation:

18 input wectors, 2 latent vectors capture 76.5455%
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Validation
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18 input vectors, 2 latent vectors capture 76.5465%
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e It seems that

e the neocybernetic model produces accurate estimation/validation results, even
better than the electrochemical model

e it provides aninsight into significance of variables

e From the practical point of view

e the modelis easy to implement and maintain, it improves production quality and
lowers measurement expenses (?)

e not all reactions need to be known - ignorance of variables does not matter as
long as the system remains stable, one can concentrate on the freedoms

e the still unbounded degrees of freedom can be regulated - “Superorganisms”
can be constructed by external explicit feedbacks!

/;/?’ﬁ ... Next, a more ambitious case ...
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Cell level #1: Metabolic system

e (Constraints = Balance equations
e DOF’s = Metabolic behaviors

Very different from
flux balance analysis

e Anthropocentric interpretations: Nutrient, waste product

e When complexity
cumulates, the balance
reactions start looking
goal-oriented, pre-
planned, and “clever”

e For example, scarcity of
some chemical changes
the balance
appropriately

Metabolic Reactions in the Mitochondria
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. Cell level #2: Genetic system

e Active genes determine the enzymes (proteins) available = the
reactions actually taking place in the cell

e Special enzymes act as transcription factors, activating (or
inhibiting) other genes

e The gene activation relationships constitute a causal network

e Traditional graphs are too “qualitative” (all or nothing), and
networks become too dense and intangible

e Alternative approach again: Assume “pancausality”

e In equilibrium, causal “forces” balance each other even though
the circumstances differ

. e Static model rather than sequential, dynamic ones
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... Two cybernetic levels of cell processes

pEEEEEENRNy
--"'- "raa,
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¢ Approprlate .."’ Gene expression "o,
abstractions: S > B e
e Two successive process : cel \Nucleus .
« . Enwroqment 1 .
levels of “generalized . :
diffusion” 3 :
e Metabolic processes
fast, genetic ones slow Genetlcat?te
= enzyme/transcription levels
e Inboth cases, forget 4 Q.“‘ Ipt
about the sequential
nature ; Chemical v .
4 reactions H
e Emergent models based : B > :
latent (logarithmi L P g -'
on latent (logarithmic) 3 g :
s Metabolic state”

variables ‘
e Bothlevels — same % A2 = chemical [evels/flows
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n =4 only!
dim(u) = 10
dim(y) = 4135

e Step
tests:

254
‘““stress

genes”
shown

@ @ s 13 s @ 15 @

Measurerments (min) Estimates (min) IMeasurements (min) Estimates (min)
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e A system model can be applied also for design and control: The
observed correlations are also causalities, changing a variable
value affects the system, making the other variables search a
new balance

Data

vV v v

d
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Conclusion

e Freedoms define the directions where variations “make a
difference that makes a difference” (G. Bateson)

e Traditionally: constraints — world as it is [ has to be
e (Cybernetically: freedoms - “world as it could be”

e One goes from info transfer to negotiation (feedforward vs.
feedbacks); from hard controls to persuasion (imposed vs.
natural dynamics)

e In applications, the role of human changes from implementing
controls to acting as a catalyst

One is near practical applications of cybernetics here...
% e Oneis nearp pp fcy
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