AS-74.4192 Elementary Cybernetics

Lecture 8:
Practical Experiments




‘“After we beat the proof out of him, let’s

® Key pOint to note: dump him in the theory-practice gap!”
In practice, theory LEMMA - 48 3+ frroe
has to be “tuned” vhen €Yo, ok i,

appropriately O FI 12 Pl

e Luckily, the
neocybernetic
framework is
very versatile!
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Some applications are evident...

e Some ways of theory application are straightforward...
e Easy: Iterative ways of implementing multivariate regression

e For example, “PCR style” and “PLS style” regression (when
the feedback from the output is omitted and when it is not)

Output Input
Q E{xy } Q E{xu'}
\\\\\\\\\\\ - /\
y y yOutputestlmate X U'O u
\/
E{xy'}'Q E{xu'}'Q

/ “PLS” - alternate applying uand y as input
//;ﬁ pplying y P
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\ HELSINKI UNIV FR\IF‘[ OF TECHNOLOGY

Department of Autor n and Systems Technolog
Cy ]_)L‘F[]c‘ijt_'h Group



Apply cybernetic intuitions in general data-based modeling?

e Depending on the case:
No mean-centering? Logarithmic variables applied? ...

e Scaling either in the form Vv, <~ V. /V., meaning that relative
changes matter most, or standard normalization of variables
(variances = 1) due to the equalization of variables!

e Cybernetic semantics studied during Lecture 10: Data must
contain not only the system state z but also the “tensions” =
actions (controls) that push the system towards balance

Z
VZE

A dt

//,%g
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e Form of “implicit subspace identification” can be implemented
when variables are grouped as time series

O k k-d
k-d QY o. oV Y 0 ® O O
QOQQ‘ %

Qo/ioo 0
X; 7 Y. 0 ® O O

@) Observed data

Autocorrelation function emerges

% Cross-correlation function emerges - direct relation to power spectra (after being Fourier transformed)
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... Some applications are less evident

e In what follows, there
are examples of how
neocybernetics could
perhaps be applied

e So, what are “technical
populations’?
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Design of networks: Case energy production

A Production cost

o Strict Behaviors of 20 consumers (U;)

optimality: -

PPPPP

vE

e Predetermined profiles:
. T A
J'=(u—gx) (u—gx)
e (Cybernetic cost:

=(u —¢x)T E {uuT } (u—¢x)

e Additional constraint: 500 620 640 6;0 62‘30\‘ (7(‘)0\\ 7/20 7‘4‘10‘ %éo 780 80
Z X = Z N Goal: Optimize production of
% = the three production units!
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e Static minimization of the criterion separately for each time
instant — three strategies experimented:

e [xplicit optimization: Piecewise linear cost criterion means that
only one of the producers is active at a time, others being in
either of the extreme values (zero or maximum)

e Explicit distribution: Profiles ¢ define (randomly) preferred
consumers for each producer; further, some plants can be
“spare plants” to substitute malfunctioning master plants

e Cybernetic strategy: Profiles ¢ are determined by the
correlation structures among consumers; because of the
nonlinearities, there exist various minima to choose from

. -.-5"':_%:!

\f’;‘f Quadratric optimum is rather
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Cybernetic local balance
near the explicit optimum
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Distributed

e There is a plenty of variation in the cybernetic
case, but the variations are small = robust?
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Technical networks in general

e Typically, the nodes in practical networks are not identical -
they can have different roles, and these roles have to be taken
into account in modeling

e The networks themselves are also very different:

e InInternet, the “raw material” can be produced and copied indefinitely,
restrictions and costs coming from transfer capacity

e In power production, on the other hand, energy transfer is no problem, capacity
restrictions and costs being caused in production

e Still, the same modeling approaches can be applicable in both cases applying the
idea of dual graphs?

e Possible applications: steam (pressure) pipelines in paper mills;
design of electric networks with varying loads, etc.
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“Agents”

e Traditionally, agents are
software constructs

e Only computation s
distributed, while control of
operation is still centralized

e Higher-level coordination

e Nothing “unanticipated” can
emerge here?

e Agents are the mainstream
conceptual framework in Al
today — something new now?

\ HELSINKI UNIVERSITY OF TECIHHNOLOGY

Department of Automation and Systerns 'l'cchnolog_\f

Cyb ernetics Group



Distributed filtering

e How to apply the cybernetic ideas in modeling of agents?
e Now: direct application of the neural intuitions

e Example: Filtering of noisy measurements delivered by a network
of distributed “social” sensors

e Easy case: The variation-orientation can be naturally motivated
in the “sum-of-squared-errors” oriented framework

e No coordination is needed: High-level functionality (filtering)
emerges from low-level actions

e ‘“‘Data-based data reconciliation” implemented in distributed
manner: Correlations among sensors are utilized to construct a
system model and state estimator to eliminate noise

“Emergent coordination in distributed sensor networks”,
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e Implementation of principal component regression (PCR):

Data conditioning Estimation of latent variables
~ E{xx}e o E{xx'} <
V < X \ |
3 o E{xu'}=

Output S

mapping .
y If one selectsy = u,
T principal component

% o Yo filtering is implemented
N
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(= E{XUT}T E{XXT}_l E{XXT}_l E{qu} (u —E/{{})JFE,{(}

e Principal component filtering can be implemented as

dx A dA
gz—AX—I— B(u—/Ez{'(}) " g—éz—AAmXXT
A T

variables X and v having much faster dynamics than u,
variables u behaving much faster than the covariances

e After these are known one can calculate

(= BTV—I—%= BTA—1x+§J(6}

//g

v Luckily, variance (error-squared)
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In practice, it is reasonable to only model changes, not absolute
values

To reach this, differentiated signals can be applied - but to
avoid noise, there has to be cut-off frequency:

G(s) = so that u(s) =G(s) u,...(s)

1+7s

To reconstruct final estimates, integration is needed as the final
step

To avoid bias problems, “leaking integrator” can be applied:
du n n
—d”t"eas =0+ & (Uppeps — U

meas )
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e In practice, itis of great importance to know also about the
validity of the estimates

e (Can condition monitoring be distributed?

e The validity of the PCA model can be measured in terms of two
quantities:

1. T?statistic, measuring the fit “inside” the model:
-1
T? = xTE{WT} X=X V=XV, ++XV

2. Q statistic, measuring the fit “oWside” the model:

Q=(u-0)' (u—ﬁ):(ul—ﬁl)i: +(u, -0.)

% e It seems that both of these can be calculated nodewise.
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Simulation: Heat transfer

e Typical processes are infinite-dimensional, cannot be modeled
exactly applying finite-dimensional models

e How to determine the process state appropriately?
e How to enhance the measurements utilizing that state?

/ Sensor 1 / Sensor 2 / Sensor 3
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Correlations between measurements

e There exists correlation:

The measurements can A
be used to enhance each 1
other

Autocorrelation function
of measurement 1

Cross-correlation between
measurements 1 and 2

Cross-correlation between
measurements 1 and 3
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Incomplete correlation structures

e Computations can be distributed in nodes Cou )
e Nodes transmit “corrections” to each other u, (t — k)
1
u, (t—2k
(. . ) (e Local model 1( )
U, (t)

« Chain model also
A=l |o |y | - Global model only u;, (t) = Uz(t_k)

N\

) Non-zero non-diagonal blocks =
communication among nodes needed
A Us (t)
® o ® ° ° ° .
Us (t o k)
B = | e ° ° o o o ° ° ° 2 k
\us (t — ) )
\ . o o [ ) o [ ] . . ‘)

/ﬁ: Nodes far apart do not necessarily
k HELSINKI UNIVERSITY OF TECHNOLOGY know about each other - resulting
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Sensor #1 — Original daa e Implemented in discrete time
~— Chain mocl to avoid bandwidth problems

w= - Global model

Ly

— Original data
Sensor #2 -~ Local model
—— Chain model
~—- Global model
— Original data
Sensor #3 ~ Local model |
— Chain model
-~ Global model |4

200 205 210 215 220 225

e Global model - clumsy and high-dimensional
e Local model - simple filtering of data - smooth

but always late if there are trends in behaviors 200 205 210 215 220 225 230 235 240 245 250

HELSINKI UNIVERSITY OF TECHNOLOGY
Department of Automation and Systerns 'l'echuo]og_\'

Cy bernetics G roup



‘L

Experiences

If sensors are fully connected, “trivial” (distributed) principal
component regression functionality is obtained

More interesting results are reached if the network is not fully
connected (“chain” structure above)

Incomplete, localized information results in better estimates

The local models are lower-dimensional: Only appropriate
information is present, resulting in fast adaptation, and
enhanced robustness

As compared to mainstream approaches to distributed sensors,
now one has overlapping “fuzzy” clusters of sensors

There does not exist global-level sparse optimality criterion -
distributed structure has theoretic, not only practical interest
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Conclusion this far

e I[ntuitions on ‘“natural robustness’’:

e Uncorrelatedness of profiles prevents cascading failures in networks?
e Only “real” changes in signal patterns are reacted to

e Noise in the system attenuated, rapid variations reduced

e Model behaviors are natural

e Intuitions on distributed agents:

e Localized information, “fuzzy clusters”, low-dimensional data
e No global design criterion exists!?

e The above applied to “social” agents with complicated (twofold)
communication structure among nodes; clearly, population of “selfish”
agents would make it simpler?

e However, there are complications ...

///ﬁ System-wide fractal

\’?” structure of stabilities
HELSINKI UNIVERSITY OF TECHNOLOGY 5
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More sophisticated cases: Actuation added

e Remember that applying the selfish agent feedback can be
implemented implicitly through the environment

e If measurements affect the environment directly, this makes it
possible to implement complete locality in control

e Scenario 1: There is a tank of unevenly stirred liquid; there exist various
sensor/actuator units (controlling concentrations / temperatures)

e Learning of action [ reaction dependency results in PCR-type control

e Problem above: Effects of action follow only after a delay when diffusion has
taken place; there are also more straightforward application examples -

e Scenario 2: There is a thin flexible (steel) plate whose deformations are to be
actively compensated (after all, passive components suffice)

e Combined local measurement and control: Now the control effects become
effective in a delayless manner - stiffness increases (see Lecture 11)
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In some applications, one can readily
apply the cybernetic “selfishness”

For example, assume that there are
cellular phones connected to a link

The goal is to utilize the available
spectrum (resource) so that the total
power would be minimized

There is negative feedback through the
environment as the neighboring
cellulars cause interference; the
stronger one transmits, the more it
worsens others’ signal-to-noise ratio.
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- Embedded neocybernetic controls

e Before, control theory was applied for understanding of
cybernetic systems; now, cybernetic understanding is applied to
study explicit, agent-based control systems

e The traditional ways to attack complex control systems are
either based on SISO techniques (for example, RGA tries to
couple inputs and outputs appropriately), or on sophisticated
multivariate techniques, where explicit models are needed

e Now, study the possibilities of constructing cybernetics-type
data-based distributed controllers and actuators ... after all,
neocybernetic systems are control systems, one just has to
employ these effects so as to reach one’s objectives
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- Challenges

1. Ina control system individual signals and actions are relevant;
transients are important, one cannot simply study the system
in the statistical way, concentrating on the emergent
phenomena like power spectra, etc., alone

2. The agents are not identical; they have their individual
predestinated roles as determined by the system structure.
What is more, the controllers are not explicitly connected to
each other, interactions take place through the environment

3. Explicit knowledge of control effects are needed, containing
the actual system dynamics; this means that there are
problems related to causality that need to be explicitly
attacked.
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. About causality

e Above, the measurement agent system was rather simple: The
actuators affected mainly corresponding measurements

e In control systems, one tries to affect behaviors farther away:
There needs to exist knowledge of action/reaction
dependencies - causal structure is needed

e Then one faces the old Humean reality: Causalities cannot be
seen in data, only knowing correlations is not enough

e The causal structure has to be given a priori, determining the
temporal or spatial precedences between signals

e One needs to distinguish (local!) input and output variables

~ ® The models need not only tract what has been observed but
also what can be done — how to reach this?
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Vision

e Cybernetic systems implement balance on various levels — what
a tempting control view!?

e Now correlations between input and output are modeled,
controller implementing the latent intermediate variable

e The model predicts behaviors in the output based on input;
when a “-" is added, one implements negative action, the
model trying to suppress expected deviations

e The modelis a balance between the past and the future

e The modelis a mirror image between the past and the future
(however, now antisymmetric image)

e Intuitively appealing idea: Symmetry pursuit

A
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Determination of an input/output model

e “PLS” rather
than PCR?

Past

Towards
the past

A

Efxd ) = ElumE{u JE{xum ) +E{xy" E{yy"

2

X

c

past

-

future

Two-directional in training
phase, one-directional
when being applied

Future

Towards
the future
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Example process

e Two multivariate controllers trying to eliminate the
disturbances entering the system

Average “convolutions” between

Controller 1 ] )
Q X Colored noise controller inputs and outputs are
- implicitly modeled and exploited

wW

v

Controller 2 .
% Q > X, Colored noise
oy |
\

_y %\g )

g
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g

e Control signal =
latent variable
between the past
and the future

e Assume causality
is OK = Correct
signals + correct
signs (otherwise
explosion takes
place during
adaptation)

(v, (k+3))
y,(k+2)

\ Y1(k +1)/

(y,(k+3))
y,(K+2)

\ yz(k+1))

E> u, (k)
E> u, (k)

ARG
r yl(k_l)
B yl(k _2)
B yz(k)

~ Y, (k1)

tyz(k_z)/

Ly, (k) )

y,(k=1)

t)’z(k_z)/
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Results .

0.2

e Advantage (?): [T i/
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extent, there are 4
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. “Second level” control?

e In neocybernetics, it is assumed that the underlying system is
already in balance, there are inner control loops in action

e If this cannot be assured for all neocybernetic adaptations, the
closed loop system can explode

e But one canimplement neocybernetic strategy over some
existing control structure, adapting the control parameters

e New adaptive control scheme: Assume there is criterion with
weighting matrices Q and R (and perhaps cross-term S)

e Implement negative feedback from signal variances to new,
diagonal weighting factors Q;; and R;; + implement LQ control

~ ® Robust control is reached where signal properties in varying
operating conditions are utilized to map the parameter space
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» Process

Model ‘

Y

- LVQ -

e Adaptation of the control
consists of the
neocybernetic formula:

control oyl

Rll l i
To be scaled to unit length
_ . (only relative weights relevant)
» Adaptation = ,

Rnn

control of control

%(‘ “Stiffness regulation” of -
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Generalization

e The above case is an example of a more general principle ...

e If only there exists some kind of negative feedback from the
“investments” to the “losses” (above, from LQ parameters to
variation levels), no matter how complicated the dependency is,
or how it is implemented, applying the adaptation principle

X =qE{Xu’ }T
between the losses U and investments X, the resulting closed-
loop behaviors are finally forced to follow the linear subspace
model: Losses are equalized, and within the investment space,

a linear DOF structure emerges that reflects the (smooth)
“operating regimes” of the system.
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““Second-Order Control”

e Oftenin complex automation systems, it is humans who
implement the highest-level controls

e One has to apply “second-order neocybernetic” thinking

Process

domain Recognition of

mental patterns

Recognition of

process patterns

Mental
domain

A
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Routines can be automated

e Inlarger
plants, there
are various
“patterns of
operation” -
can be done
using sparse
coded features

e How to
implement
“expert model”
—see Lec. 10

Human

Subspace
Action < — b de— Process
patterns |« “ - Dpatterns
La\tul zat/:j
extraction extraction
\ /
Control «—  State
> Process
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e Above, degrees of freedom were employed to find the
“controller controller’” models

e In general, DOF’s seem to offer many approaches for
applications in control engineering

e DOF based pattern recognition and subsequent system control
in a high-dimensional measurement space would be, of course,
a straightforward application ...

e Below, possibilities of DOF based piecewise linear control are
studied in a truly challenging case — controlling of the walking of
a two-legged unstable “robot”

e This was part of Olli Haavisto’s diploma work.
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Clustered regression structure

]

: s : A
e Piecewise linear regression model |:"'\
T : Tete\*
e Datais divided into clusters, each o
. . . \,** :}'. ]
belonging to an operating point AR
e Local principal component PCR R
regression model attached to each h
cluster

e Total model estimate is a combination
of the relevant (nearest) local model
estimates

A

f

\/,?
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Robot simulation model

e Walking biped robot in 2D
plane

e Input: moments M
e Ouput: state of the system

e Simulatedin
Matlab/Simulink using the
exact dynamic equations

e Sample gait produced by
four ordinary PD controllers

G
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Modeling the inverse dynamics

e Goal was to form a regression mapping from the current biped
state to the next control (moment) vector

e (lustered regression was applied to the sample data collected
from the PD controlled gait

e 20 clusters were used
e State dimension reduction to 8 principal components in each
local model

e only relevant information in the data modeled
e model simplification
e noise removal

P

N

/7

=
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Locally linear submodels

Clustered teaching data

05-—....

Swing leg knee angle ¥, (rad)

05—

0.5

1]

Torso angle e frad) 05 el UL [ e -
| ﬂ' 15 715 Stance leg hip angle B, (rad)
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Clustered regression control

e The moment estimate corresponding to the current state was
used as a new control value
e No reference signals or additional controllers needed
e The gait is stored inside the model
e Sample gait can be reproduced quite well

e Comparing the behaviours (animation):

Sample gait Learned gait
| |

A [ /
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- Towards more challenging views

e Semantic webs are today’s hot topic in Internet: that is, WWW
is extended so that the semantics of information and services on
the web is defined

e These ontologies are defined by humans ... distantly, oneis
reminded of expert systems and what happened with them ...

e In special environments, being based on mathematics,
semantics (“good behavior”, etc.) can often be quantified

e What is more, relevance issues can be addressed:

e For example, theory says that identification algorithms generally converge to the
correct parameter values; this means that very much research is done on such
methods, even though practical identifiability is a very different thing

e On the other hand, there are many soft computing methods that cannot be
proven; however, they seem to work, thus offering a platform for applications
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e In control systems, semantics (behavioral qualities) can be
reduced to numbers

e Simulation - a S :

. ystem behavior
consistent way @ Plant properties
upwards in the !
hierarchy d@ Sta_bility _

e “Trust” can be : Gain Margins
reached? Poles
S S )
: Eigenvalues
- %@0 — Data structures
—— N Numbers

d
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X

e “Trust” can now be
based on relevance

-
Data

Unicode

™ Rules

Data Proof

Logic

Ontology vocabulary

Digital Signature
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X

Simulation
engine

Problem
case

Objectives
specifications

Private domain

Alternative

process
models

Alternative
design
methods

Alternative
algorithms
and tools

Public domain
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. Innovations through DOF’s

e What can such “truly semantic’” web perhaps do then?

e Again, in the space of semantics-loaded parameters, it can help
finding the degrees of freedom, thus compressing and
structuring the search space when doing design

e One does not have to blindly believe some “gurus” when one
can test different approaches with one’s own problem cases
and specifications

e The Web can “extend the mind”’ (see Lectures 10 and 12!)

e (Can such views be put in practice? — Yes, as seen next time: in
narrow cases where ‘“good behaviors” can be defined; this has
already been done (doctoral thesis of Kalle Halmevaara)
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Today’s challenges in industrial automation

e Earlierin the course: Populations, agents, networks, etc., were
discussed — perhaps interesting in future automation?

e Today, the reality is still very different

e Systems to be studied are structured and hierarchic
e Underlying system/model structures are non-homogeneous
e Methodologies and tools are deterministic and of SISO type

e \Whatis more...

e Humans are to be discussed with and convinced in all phases
e Pragmatical orientedness rather than theoretical innovativeness is valued

e Goal: Try to understand complex system dynamics — new
methods have to match the old practices and extend them

_ e Complex systems cannot
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Role of humans

e Humans are parts of control systems in many ways
e They constitute the highest level of feedback controls
e Theyimplement the new systems

e Systems including humans are automatically complex

Holistic understanding of new model structures is needed

1. Methods must be capable of capturing heterogeneous
subsystems (like humans) in the same framework

». Methods must be understandable and related to old
technologies to become accepted

e Homogeneity is needed: To become accepted, fluent transition
> . .
= between old and new modeling practices needed

V7~ |
(/7 |
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Example

e Still today, almost all of the industrial controllers are of the
classical PID type

e Why the modern control theory that outperforms classical did
not flourish and never really became to factory floor level?

e Why the “postmodern” ideas (neural networks, fuzzy systems)
are today so popular instead?
e Promises: They “need no model”, they “are simple and understandable”
e The operators, system developers, etc., consist of humans,
constituting cybernetic communities

e Approval goes through understanding

e Learning is a constructivistic process — new things must be
related to old practices
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Conclusion

e To putitboldly -

e Mathematics - is a strictly formal play within the world of constraints
e Arts —is strictly intuitive, accepting no constraints whatsoever

e Engineering —is to find the degrees of freedom when all real life constraints are
taken into account, thus fulfilling the cybernetic evolutionary ideal

e Next time — about evolutionary DOF’s

% MOREILS EATALOTIS CRIMPUS IMBECTLLS AFENS STUMDILS MEARDERSLON G IERSAFEN
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